OsMAPK6 positively regulates rice cold tolerance at seedling stage via phosphorylating and stabilizing OsICE1 and OsIPA1

Theor Appl Genet. 2023 Dec 16;137(1):10. doi: 10.1007/s00122-023-04506-8.ABSTRACTRice is a chilling-sensitive plant, and extremely low temperatures seriously decrease rice production. Several genes involved in chilling stress have been reported in rice; however, the chilling signaling in rice remains largely unknown. Here, we investigated the chilling tolerance phenotype of overexpression of constitutive active OsMAPK6 (CAMAPK6-OE) and OsMAPK6 mutant dsg1, and demonstrated that OsMAPK6 positively regulated rice chilling tolerance. It was shown that, under cold stress, the survival rate of dsg1 was significantly lower than that of WT, whereas CAMAPK6-OE display higher survival rate than WT. Physiological assays indicate that ion leakage and dead cell in dsg1 was much more severe than those in WT and CAMAPK6-OE. Consistently, expression of chilling responsive genes in dsg1, including OsCBFs and OsTPP1, was significantly lower than that of in WT and CAMAPK6-OE. Biochemical analyses revealed that chilling stress promotes phosphorylation of OsMAPK6. Besides, we found that OsMAPK6 interacts with and phosphorylates two key regulators in rice cold signaling, OsIPA1 and OsICE1, and then enhance their protein stability. Overall, our results revealed a cold-induced OsMAPK6-OsICE1/OsIPA1 signaling cascade by which OsMAPK6 was involved in rice chilling tolerance, which provides novel insights to understand rice cold response at seedling stage.PMID:38103049 | DOI:10.1007/s00122-023-04506-8
Source: TAG. Theoretical and Applied Genetics - Category: Genetics & Stem Cells Authors: Source Type: research
More News: Genetics