Semi-Supervised Representation Learning for Segmentation on Medical Volumes and Sequences

Benefiting from the massive labeled samples, deep learning-based segmentation methods have achieved great success for two dimensional natural images. However, it is still a challenging task to segment high dimensional medical volumes and sequences, due to the considerable efforts for clinical expertise to make large scale annotations. Self/semi-supervised learning methods have been shown to improve the performance by exploiting unlabeled data. However, they are still lack of mining local semantic discrimination and exploitation of volume/sequence structures. In this work, we propose a semi-supervised representation learning method with two novel modules to enhance the features in the encoder and decoder, respectively. For the encoder, based on the continuity between slices/frames and the common spatial layout of organs across subjects, we propose an asymmetric network with an attention-guided predictor to enable prediction between feature maps of different slices of unlabeled data. For the decoder, based on the semantic consistency between labeled data and unlabeled data, we introduce a novel semantic contrastive learning to regularize the feature maps in the decoder. The two parts are trained jointly with both labeled and unlabeled volumes/sequences in a semi-supervised manner. When evaluated on three benchmark datasets of medical volumes and sequences, our model outperforms existing methods with a large margin of 7.3% DSC on ACDC, 6.5% on Prostate, and 3.2% on CAMUS when on...
Source: IEE Transactions on Medical Imaging - Category: Biomedical Engineering Source Type: research