Emergence of Spatial Scales and Macroscopic Tissue Dynamics in Active Epithelial Monolayers

Migrating cells in tissues are often known to exhibit collective swirling movements. In this paper, we develop an active vertex model with polarity dynamics based on contact inhibition of locomotion (CIL). We show that under this dynamics, the cells form steady-state vortices in velocity, polarity, and cell stress with length scales that depend on polarity alignment rate ( ζ), self-motility (v0), and cell-cell bond tension ( λ). When the ratio λ/v0 becomes larger, the tissue reaches a near jamming state because of the inability of the cells to exchange their neighbors, and the length scale associated with tissue kinematics increases. A deeper examination of this jammed state provides insights into the mechanism of sustained swirl formation under CIL rule that is governed by the feedback between cell polarities and deformations. To gain additional understanding of how active forcing governed by CIL dynamics leads to large-scale tissue dynamics, we systematically coarse-grain cell stress, polarity, and motility and show that the tissue remains polar even on larger length scales. Overall, we explore the origin of swirling patterns during collective cell migration and obtain a connection between cell-level dynamics and large-scale cellular flow patterns observed in epithelial monolayers.Cells Tissues Organs
Source: Cells Tissues Organs - Category: Cytology Source Type: research
More News: Cytology