Weakly Supervised Breast Lesion Detection in Dynamic Contrast-Enhanced MRI

AbstractCurrently, obtaining accurate medical annotations requires high labor and time effort, which largely limits the development of supervised learning-based tumor detection tasks. In this work, we investigated a weakly supervised learning model for detecting breast lesions in dynamic contrast-enhanced MRI (DCE-MRI) with only image-level labels. Two hundred fifty-four normal and 398 abnormal cases with pathologically confirmed lesions were retrospectively enrolled into the breast dataset, which was divided into the training set (80%), validation set (10%), and testing set (10%) at the patient level. First, the second image series S2 after the injection of a contrast agent was acquired from the 3.0-T, T1-weighted dynamic enhanced MR imaging sequences. Second, a feature pyramid network (FPN) with convolutional block attention module (CBAM) was proposed to extract multi-scale feature maps of the modified classification network VGG16. Then, initial location information was obtained from the heatmaps generated using the layer class activation mapping algorithm (Layer-CAM). Finally, the detection results of breast lesion were refined by the conditional random field (CRF). Accuracy, sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC) were utilized for evaluation of image-level classification. Average precision (AP) was estimated for breast lesion localization. Delong ’s test was used to compare the AUCs of different models for signif...
Source: Journal of Digital Imaging - Category: Radiology Source Type: research