Filtered By:
Source: Molecular Neurobiology
Education: Learning

This page shows you your search results in order of relevance.

Order by Relevance | Date

Total 10 results found since Jan 2013.

Proteomics-Guided Study on Buyang Huanwu Decoction for Its Neuroprotective and Neurogenic Mechanisms for Transient Ischemic Stroke: Involvements of EGFR/PI3K/Akt/Bad/14-3-3 and Jak2/Stat3/Cyclin D1 Signaling Cascades
AbstractBuyang Huanwu Decoction (BHD), a classic traditional Chinese medicine (TCM) formula, has been used for recovering neurological dysfunctions and treating post-stroke disability in China for 200  years. In the present study, we investigated the effects of BHD on inhibiting neuronal apoptosis, promoting proliferation and differentiation of neural stem cells (NSCs) and neurite formation and enhancing learning and memory functional recovery in an experimental rat ischemic stroke model. BHD si gnificantly reduced infarct volume and decreased cell apoptosis in the ischemic brain. BHD enhanced neuronal cell viability in v...
Source: Molecular Neurobiology - September 2, 2020 Category: Neurology Source Type: research

Direct AT2R Stimulation Slows Post-stroke Cognitive Decline in the 5XFAD Alzheimer ’s Disease Mice
AbstractAlzheimer ’s disease (AD), currently the single leading cause of death still on the rise, almost always coexists alongside vascular cognitive impairment (VCI). In fact, the ischemic disease affects up to 90% of AD patients, with strokes and major infarctions representing over a third of vascular lesions. St udies also confirmed that amyloid plaques, typical of AD, are much more likely to cause dementia if strokes or cerebrovascular damage also exist, leading to the term “mixed pathology” cognitive impairment. Although its incidence is expected to grow, there are no satisfactory treatments. There is hence an u...
Source: Molecular Neurobiology - June 5, 2022 Category: Neurology Source Type: research

Bone Marrow-Derived Endothelial Progenitor Cells Protect Against Scopolamine-Induced Alzheimer-Like Pathological Aberrations
Abstract Vascular endothelial dysfunction plays a key role in the pathogenesis of Alzheimer’s disease (AD). Patients with AD have displayed decreased circulating endothelial progenitor cells (EPCs) which repair and maintain the endothelial function. Transplantation of EPCs has emerged as a promising approach for the management of cerebrovascular diseases including ischemic stroke, however, its impact on AD has been poorly described. Thus, the current study aimed at investigating the effects of bone marrow-derived (BM) EPCs transplantation in repeated scopolamine-induced cognitive impairment, an experimental mode...
Source: Molecular Neurobiology - December 20, 2014 Category: Neurology Source Type: research

Upregulating the Expression of Survivin-HBXIP Complex Contributes to the Protective Role of IMM-H004 in Transient Global Cerebral Ischemia/Reperfusion
Abstract IMM-H004, a 3-piperazinylcoumarin compound derived from coumarin, has been proved effective against CA1 cell loss and spatial learning impairments resulting from transient global ischemia/reperfusion (TGCI/R), while the mechanism is still largely unknown. Here, we confirmed that treatment of rats with IMM-H004 immediately after TGCI/R ameliorated delayed neuronal death (DND) in the CA1 of hippocampus and cortex. Further study suggested that IMM-H004 contributed to the expression of antiapoptotic protein survivin through the activation of PI3K-dependent protein kinase B (PKB/Akt), which led to the phosphor...
Source: Molecular Neurobiology - January 7, 2016 Category: Neurology Source Type: research

A Tale of the Good and Bad: Remodeling of the Microtubule Network in the Brain by Cdk5
Abstract Cdk5, a cyclin-dependent kinase family member, is a global orchestrator of neuronal cytoskeletal dynamics. During embryogenesis, Cdk5 is indispensable for brain development. In adults, it is essential for numerous neuronal processes, including higher cognitive functions such as learning and memory formation, drug addiction, pain signaling, and long-term behavior changes through long-term potentiation and long-term depression, all of which rely on rapid alterations in the cytoskeleton. Cdk5 activity becomes deregulated in various brain disorders, including Alzheimer’s disease, Parkinson’s disease, Hunt...
Source: Molecular Neurobiology - March 5, 2016 Category: Neurology Source Type: research

Tale of the Good and the Bad Cdk5: Remodeling of the Actin Cytoskeleton in the Brain
AbstractCdk5 kinase, a cyclin-dependent kinase family member, is a key regulator of cytoskeletal remodeling in the brain. Cdk5 is essential for brain development during embryogenesis. After birth, it is essential for numerous neuronal processes such as learning and memory formation, drug addiction, pain signaling, and long-term behavior changes, all of which rely on rapid alterations in the cytoskeleton. Cdk5 activity is deregulated in various brain disorders including Alzheimer ’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and ischemic stroke, resulting in profound remodeling of the neuronal cytoskel...
Source: Molecular Neurobiology - May 13, 2017 Category: Neurology Source Type: research

Possible Involvement of PI3-K/Akt-Dependent GSK-3 β Signaling in Proliferation of Neural Progenitor Cells After Hypoxic Exposure
AbstractWe previously demonstrated that proliferation of endogenous neural progenitor cells is enhanced by cerebral ischemia and that phosphatidylinositol 3-kinase (PI3-K)/Akt-dependent glycogen synthase kinase (GSK)-3 β signaling is involved in ischemia-induced neurogenesis. It is important to learn more about the regulation of proliferation and differentiation of neural progenitor cells under ischemic conditions, as such knowledge that may serve as the basis for the development of new therapeutic approaches for stroke. However, it remains to be addressed whether a change in that signaling pathway is induced in neural pr...
Source: Molecular Neurobiology - July 6, 2018 Category: Neurology Source Type: research

Exercise Rehabilitation Attenuates Cognitive Deficits in Rats with Traumatic Brain Injury by Stimulating the Cerebral HSP20/BDNF/TrkB Signalling Axis
In this study, we used fluid percussion injury in rats to simulate mild TBI. For rats, we used both passive avoidance learning and the Y-maze tests to evaluate cognitive function. We investigated whether PE rehabilitation attenuated cognitive deficits in rats with TBI and determined the contribution of hippocampal and cortical expression of heat shock protein 20 (HSP20) to PE-mediated cognitive recovery. In addition to increasing hippocampal and cortical expression of HSP20, brain-derived neurotrophic factor (BDNF), and the tropomyosin receptor kinase B (TrkB) ratio, PE rehabilitation significantly attenuated brain contusi...
Source: Molecular Neurobiology - October 5, 2018 Category: Neurology Source Type: research

Knockdown of Astrocytic Monocarboxylate Transporter 4 in the Motor Cortex Leads to Loss of Dendritic Spines and a Deficit in Motor Learning
In this study, we investigated astrocyte-specific MCT4 in motor learning and neuroplasticity of the M1 primary motor cortex using a cell-type specific shRNA knockdown of MCT4. Knockdown of astrocyte-specific MCT4 resulted in impaired motor performance and learning on the accelerating rotarod. In addition, MCT4 knockdown was associated with a reduction of neuronal dendritic spine density and spine width and decreased protein expression of PSD95, Arc, and cFos. Using near-infrared –conjugated 2-deoxyglucose uptake as a surrogate marker for neuronal activity, MCT4 knockdown was also associated with decreased neuronal activi...
Source: Molecular Neurobiology - November 25, 2021 Category: Neurology Source Type: research