Various skin impedance models based on physiological stratification
Transdermal drug delivery is a non-invasive method of drug administration. However, to achieve this, the drug has to pass through the complicated structure of the skin. The complex structure of skin can be modelled by an electrical equivalent circuit to calculate its impedance. In this work, the transfer function of three electrical models of the human skin (Montague, Tregear and Lykken Model) based on physiological stratification are analysed. Sensitivity analysis of these models is carried out to consider the extent to which changes in system parameters (different types of R and C as described by different models) affect...
Source: IET Systems Biology - May 15, 2020 Category: Biology Source Type: research

Blood glucose regulation and control of insulin and glucagon infusion using single model predictive control for type 1 diabetes mellitus
This study elaborates on the design of artificial pancreas using model predictive control algorithm for a comprehensive physiological model such as the Sorensen model, which regulates the blood glucose and can have a longer control time in normal glycaemic region. The main objective of the proposed algorithm is to eliminate the risk of hyper and hypoglycaemia and have a precise infusion of hormones: insulin and glucagon. A single model predictive controller is developed to control the bihormones, insulin, and glucagon for such a development unmeasured disturbance is considered for a random time. The simulation result for t...
Source: IET Systems Biology - May 15, 2020 Category: Biology Source Type: research

Robustness of a biomolecular oscillator to pulse perturbations
Biomolecular oscillators can function robustly in the presence of environmental perturbations, which can either be static or dynamic. While the effect of different circuit parameters and mechanisms on the robustness to steady perturbations has been investigated, the scenario for dynamic perturbations is relatively unclear. To address this, the authors use a benchmark three protein oscillator design – the repressilator – and investigate its robustness to pulse perturbations, computationally as well as use analytical tools of Floquet theory. They found that the metric provided by direct computations of the time...
Source: IET Systems Biology - May 15, 2020 Category: Biology Source Type: research

Identification of specific microRNA–messenger RNA regulation pairs in four subtypes of breast cancer
This study demonstrated that the common genes in four subtypes showed different regulation. Also, the hsa-miR-182 and decorin pair performs different functions among the four subtypes of breast cancer. The result indicated that heterogeneity of breast cancer is not only reflected in the different expression patterns among different genes, but also in the different regulatory networks of the same group of genes. (Source: IET Systems Biology)
Source: IET Systems Biology - May 15, 2020 Category: Biology Source Type: research

Application of conditional robust calibration to ordinary differential equations models in computational systems biology: a comparison of two sampling strategies
Mathematical modelling is a widely used technique for describing the temporal behaviour of biological systems. One of the most challenging topics in computational systems biology is the calibration of non-linear models; i.e. the estimation of their unknown parameters. The state-of-the-art methods in this field are the frequentist and Bayesian approaches. For both of them, the performance and accuracy of results greatly depend on the sampling technique employed. Here, the authors test a novel Bayesian procedure for parameter estimation, called conditional robust calibration (CRC), comparing two different sampling techniques...
Source: IET Systems Biology - May 15, 2020 Category: Biology Source Type: research

Coupling of cell fate selection model enhances DNA damage response and may underlie BE phenomenon
This study proposes a plausible coupling model of three-mode two-dimensional oscillators, which models the p53-mediated cell fate selection in globally coupled DSB-induced cells. The coupled model consists of ATM and Wip1 proteins as variables. The coupling mechanism is realised through ATM variable via a mean-field modelling the bystander signal in the intercellular medium. Investigation of the model reveals that the coupling generates more sensitive DNA damage response by affecting cell fate selection. Additionally, the authors search for the cause-effect relationship between coupled p53 network oscillators and bystander...
Source: IET Systems Biology - March 20, 2020 Category: Biology Source Type: research

Chaotic emperor penguin optimised extreme learning machine for microarray cancer classification
Microarray technology plays a significant role in cancer classification, where a large number of genes and samples are simultaneously analysed. For the efficient analysis of the microarray data, there is a great demand for the development of intelligent techniques. In this article, the authors propose a novel hybrid technique employing Fisher criterion, ReliefF, and extreme learning machine (ELM) based on the principle of chaotic emperor penguin optimisation algorithm (CEPO). EPO is a recently developed metaheuristic method. In the proposed method, initially, Fisher score and ReliefF are independently used as filters for r...
Source: IET Systems Biology - March 20, 2020 Category: Biology Source Type: research

Network-based computational approach to identify genetic links between cardiomyopathy and its risk factors
This study aimed to identify molecular biomarkers involved in inflammatory CMP development and progression using a systems biology approach. The authors analysed microarray gene expression datasets from CMP and tissues affected by risk factors including smoking, ageing factors, high body fat, clinical depression status, insulin resistance, high dietary red meat intake, chronic alcohol consumption, obesity, high-calorie diet and high-fat diet. The authors identified differentially expressed genes (DEGs) from each dataset and compared those from CMP and risk factor datasets to identify common DEGs. Gene set enrichment analys...
Source: IET Systems Biology - March 20, 2020 Category: Biology Source Type: research

Dependence of bacterial growth rate on dynamic temperature changes
Temperature is an important determinant of bacterial growth. While the dependence of bacterial growth on different temperatures has been well studied for many bacterial species, prediction of bacterial growth rate for dynamic temperature changes is relatively unclear. Here, the authors address this issue using a combination of experimental measurements of the growth, at the resolution of 5 min, of Escherichia coli and mathematical models. They measure growth curves at different temperatures and estimate model parameters to predict bacterial growth profiles subject to dynamic temperature changes. They compared these ...
Source: IET Systems Biology - March 20, 2020 Category: Biology Source Type: research

Hypnosis regulation in propofol anaesthesia employing super-twisting sliding mode control to compensate variability dynamics
This study focuses on regulation of the hypnosis level in the presence of surgical stimulus including skin incision, surgical diathermy and laryngoscopy as well as inter-patient variability by designing super-twisting sliding mode control (STSMC). The depth of the hypnosis level is maintained to 50 on the BIS level in the maintenance phase after improving the induction phase to 60 s using the conventional sliding mode control and 30 s with STSMC. The proposed scheme also compensates the inter-patient variability dynamics including height, age and weight of the different silico patients. Moreover, the surgical...
Source: IET Systems Biology - March 20, 2020 Category: Biology Source Type: research

Deciphering the expression dynamics of ANGPTL8 associated regulatory network in insulin resistance using formal modelling approaches
ANGPTL8 is a recently identified novel hormone which regulates both glucose and lipid metabolism. The increase in ANGPTL8 during compensatory insulin resistance has been recently reported to improve glucose tolerance and a part of cytoprotective metabolic circuit. However, the exact signalling entities and dynamics involved in this process have remained elusive. Therefore, the current study was conducted with a specific aim to model the regulation of ANGPTL8 with emphasis on its role in improving glucose tolerance during insulin resistance. The main contribution of this study is the construction of a discrete model (based ...
Source: IET Systems Biology - March 20, 2020 Category: Biology Source Type: research

Ensembled machine learning framework for drug sensitivity prediction
Drug sensitivity prediction is one of the critical tasks involved in drug designing and discovery. Recently several online databases and consortiums have contributed to providing open access to pharmacogenomic data. These databases have helped in developing computational approaches for drug sensitivity prediction. Cancer is a complex disease involving the heterogeneous behaviour of same tumour-type patients towards the same kind of drug therapy. Several methods have been proposed in the literature to predict drug sensitivity. However, these methods are not efficient enough to predict drug sensitivity. The present study has...
Source: IET Systems Biology - January 17, 2020 Category: Biology Source Type: research

Chattering-free hybrid adaptive neuro-fuzzy inference system-particle swarm optimisation data fusion-based BG-level control
In this study, a closed-loop control scheme is proposed for the glucose–insulin regulatory system in type-1 diabetic mellitus (T1DM) patients. Some innovative hybrid glucose–insulin regulators have combined artificial intelligence such as fuzzy logic and genetic algorithm with well known Palumbo model to regulate the blood glucose (BG) level in T1DM patients. However, most of these approaches have focused on the glucose reference tracking, and the qualitative of this tracking such as chattering reduction of insulin injection has not been well-studied. Higher-order sliding mode (HoSM) controllers have been emp...
Source: IET Systems Biology - January 17, 2020 Category: Biology Source Type: research

Blood glucose concentration control for type 1 diabetic patients: a multiple-model strategy
In this study, a multiple-model strategy is evaluated as an alternative closed-loop method for subcutaneous insulin delivery in type 1 diabetes. Non-linearities of the glucose–insulin regulatory system are considered by modelling the system around five different operating points. After conducting some identification experiments in the UVA/Padova metabolic simulator (accepted simulator by the US Food and Drug Administration (FDA)), five transfer functions are obtained for these operating points. Paying attention to some physiological facts, the control objectives such as the required settling time and permissible bou...
Source: IET Systems Biology - January 17, 2020 Category: Biology Source Type: research

Hypoglycaemia-free artificial pancreas project
Driving blood glycaemia from hyperglycaemia to euglycaemia as fast as possible while avoiding hypoglycaemia is a major problem for decades for type-1 diabetes and is solved in this study. A control algorithm is designed that guaranties hypoglycaemia avoidance for the first time both from the theory of positive systems point of view and from the most pragmatic clinical practice. The solution consists of a state feedback control law that computes the required hyperglycaemia correction bolus in real-time to safely steer glycaemia to the target. A rigorous proof is given that shows that the control-law respects the positivity ...
Source: IET Systems Biology - January 17, 2020 Category: Biology Source Type: research