Hypermutation takes the driver’s seat

Abstract Most pediatric tumors have only very few somatic mutations. However, a recent study revealed that a subset of tumors from children with congenital biallelic deficiency of DNA mismatch repair exhibits a mutational load surpassing almost all other cancers. In these ultra-hypermutated tumors, somatic mutations in the proofreading DNA polymerases complement the congenital mismatch repair deficiency to completely abolish replication repair, thereby driving tumor development. These findings open several possibilities for exploiting ultra-hypermutation for cancer therapy.
Source: Genome Medicine - Category: Genetics & Stem Cells Source Type: research

Related Links:

Yuan Loss of cell cycle control is characteristic of tumorigenesis. The protein p21 is the founding member of cyclin-dependent kinase inhibitors and an important versatile cell cycle protein. p21 is transcriptionally controlled by p53 and p53-independent pathways. Its expression is increased in response to various intra- and extracellular stimuli to arrest the cell cycle ensuring genomic stability. Apart from its roles in cell cycle regulation including mitosis, p21 is involved in differentiation, cell migration, cytoskeletal dynamics, apoptosis, transcription, DNA repair, reprogramming of induced pluripotent stem ce...
Source: Cancers - Category: Cancer & Oncology Authors: Tags: Review Source Type: research
In conclusion, our data show how oncogenic and tumor-suppressive drivers of cellular senescence act to regulate surveillance processes that can be circumvented to enable SnCs to elude immune recognition but can be reversed by cell surface-targeted interventions to purge the SnCs that persist in vitro and in patients. Since eliminating SnCs can prevent tumor progression, delay the onset of degenerative diseases, and restore fitness; since NKG2D-Ls are not widely expressed in healthy human tissues and NKG2D-L shedding is an evasion mechanism also employed by tumor cells; and since increasing numbers of B cells express NKG2D ...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Abstract Telomeres are a unique structure of DNA repeats covered by proteins at the ends of the chromosomes that protect the coding regions of the genome and function as a biological clock. They require a tight regulation of the factors covering and protecting their structure, as they are shortened with each cell division to limit the ability of cells to replicate uncontrollably. Additionally, they protect the chromosome ends from DNA damage responses and thereby, prevent genomic instability. Telomere dysfunction can lead to chromosomal abnormalities and cancer. Therefore, dysregulation of any of the factors that ...
Source: Current Issues in Molecular Biology - Category: Molecular Biology Authors: Tags: Curr Issues Mol Biol Source Type: research
This study not only provides a promising strategy for facile nanolization of functional food composites with hydrophobic defects but also sheds light on their cardiac protection and action mechanisms against IR‐induced disease.
Source: Small - Category: Nanotechnology Authors: Tags: Full Paper Source Type: research
In this study, we investigated the molecular mechanisms by which the human TNBC cell line MDA-MB-231, expressing PD-L1, responds to atezolizumab, using RNA-Seq. Transcriptome analysis revealed 388 upregulated and 362 downregulated genes in response to atezolizumab treatment. The expression of selected genes, from RNA-Seq data, was subsequently validated using RT-qPCR in the MDA-MB-231 and MDA-MB-468 TNBC cells following atezolizumab treatment. Bioinformatics analysis revealed that atezolizumab downregulates genes promoting cell migration/invasion and metastasis, epithelial-mesenchymal transition (EMT), cell growth/prolifer...
Source: Cancers - Category: Cancer & Oncology Authors: Tags: Article Source Type: research
This study elucidates the potential to use mitochondria from different donors (PAMM) to treat UVR stress and possibly other types of damage or metabolic malfunctions in cells, resulting in not only in-vitro but also ex-vivo applications. Gene Therapy in Mice Alters the Balance of Macrophage Phenotypes to Slow Atherosclerosis Progression https://www.fightaging.org/archives/2019/07/gene-therapy-in-mice-alters-the-balance-of-macrophage-phenotypes-to-slow-atherosclerosis-progression/ Atherosclerosis causes a sizable fraction of all deaths in our species. It is the generation of fatty deposits in blood vessel...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In this study, we show the ability of U94 to exert its anticancer activity on three different TNBC cell lines by inhibiting DNA damage repair genes, cell cycle and eventually leading to cell death following activation of the intrinsic apoptotic pathway. Interestingly, we found that U94 acted synergistically with DNA-damaging drugs. Overall, we provide evidence that U94 is able to combat tumor cells with different mechanisms, thus attesting for the great potential of this molecule as a multi-target drug in cancer therapy.
Source: Cancers - Category: Cancer & Oncology Authors: Tags: Article Source Type: research
Abstract The Tousled-like kinases (TLKs) are an evolutionarily conserved family of serine-threonine kinases that have been implicated in DNA replication, DNA repair, transcription, chromatin structure, viral latency, cell cycle checkpoint control and chromosomal stability in various organisms. The functions of the TLKs appear to depend largely on their ability to regulate the H3/H4 histone chaperone ASF1, although numerous TLK substrates have been proposed. Over the last few years, a clearer picture of TLK function has emerged through the identification of new partners, the definition of specific roles in developm...
Source: Cellular and Molecular Life Sciences : CMLS - Category: Cytology Authors: Tags: Cell Mol Life Sci Source Type: research
In this study, we have reviewed the important roles of HATs in different human malignancies.
Source: Current Cancer Therapy Reviews - Category: Cancer & Oncology Source Type: research
Abstract Faithful duplication of the genome is critical for the survival of an organism and prevention of malignant transformation. Accurate replication of a large amount of genetic information in a timely manner is one of the most challenging cellular processes and is often perturbed by intrinsic and extrinsic barriers to DNA replication fork progression, a phenomenon referred to as DNA replication stress. Elevated DNA replication stress is a primary source of genomic instability and one of the key hallmarks of cancer. Therefore, targeting DNA replication stress is an emerging concept for cancer therapy. The repl...
Source: DNA Repair - Category: Genetics & Stem Cells Authors: Tags: DNA Repair (Amst) Source Type: research
More News: Cancer | Cancer & Oncology | Cancer Therapy | Child Development | Children | Gastroschisis Repair | Genetics | Pediatrics | Study