A glitch in the recycling

(Ludwig Institute for Cancer Research) In studying the molecular biology of brain development, a team of researchers led by Ludwig Stockholm director Thomas Perlmann has discovered how disruption of a developmental mechanism alters the very nerve cells that are most affected in Parkinson's disease. The results of their study, which took nearly four years to complete and involved the targeted manipulation of mouse genes to generate a model of the disease, are published in the current issue of Nature Neuroscience.
Source: EurekAlert! - Cancer - Category: Cancer & Oncology Source Type: news

Related Links:

This article presents the original descriptions of some recent physics mechanisms (based on the thermodynamic, kinetic, and quantum tunnel effects) providing stable 2H/1H isotope fractionation, leading to the accumulation of particular isotopic forms in intra- or intercellular space, including the molecular effects of deuterium interaction with 18O/17O/16O, 15N/14N, 13C/12C, and other stable biogenic isotopes. These effects were observed mainly at the organelle (mitochondria) and cell levels. A new hypothesis for heavy nonradioactive isotope fractionation in living systems via neutron effect realization is discussed. The c...
Source: Molecules - Category: Chemistry Authors: Tags: Article Source Type: research
Abstract Endosomes and lysosomes (endolysosomes) are membrane bounded organelles that play a key role in cell survival and cell death. These acidic intracellular organelles are the principal sites for intracellular hydrolytic activity required for the maintenance of cellular homeostasis. Endolysosomes are involved in the degradation of plasma membrane components, extracellular macromolecules as well as intracellular macromolecules and cellular fragments. Understanding the physiological significance and pathological relevance of endolysosomes is now complicated by relatively recent findings of physical and function...
Source: Neurobiology of Disease - Category: Neurology Authors: Tags: Neurobiol Dis Source Type: research
In this study, we hypothesized that moderately and chronically reducing ACh could attenuate the deleterious effects of aging on NMJs and skeletal muscles. To test this hypothesis, we analyzed NMJs and muscle fibers from heterozygous transgenic mice with reduced expression of the vesicular ACh transporter (VAChT), VKDHet mice, which present with approximately 30% less synaptic ACh compared to control mice. Because ACh is constitutively decreased in VKDHet, we first analyzed developing NMJs and muscle fibers. We found no obvious morphological or molecular differences between NMJs and muscle fibers of VKDHet and contro...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In this study, the enhanced mice live somewhat longer than their unmodified peers, though not as much longer as is the case for the application of telomerase gene therapy. The mice do also exhibit reduced cancer risk, however. The scientists here class telomere shortening as a cause of aging, which is not a point universally agreed upon. Reductions in average telomere length in tissues looks much more like a downstream consequence of reduced stem cell activity than an independent mechanism. Researchers obtain the first mice born with hyper-long telomeres and show that it is possible to extend life without any geneti...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Pocket-size ultrasound devices that cost 50 times less than the machines in hospitals (and connect to your phone). Virtual reality that speeds healing in rehab. Artificial intelligence that’s better than medical experts at spotting lung tumors. These are just some of the innovations now transforming medicine at a remarkable pace. No one can predict the future, but it can at least be glimpsed in the dozen inventions and concepts below. Like the people behind them, they stand at the vanguard of health care. Neither exhaustive nor exclusive, the list is, rather, representative of the recasting of public health and medic...
Source: TIME: Health - Category: Consumer Health News Authors: Tags: Uncategorized HealthSummit19 technology Source Type: news
Our world has never witnessed a time of greater promise for improving human health. Many of today’s health advances have stemmed from a long arc of discovery that begins with strong, steady support for basic science. In large part because of fundamental research funded by the National Institutes of Health (NIH), which traces its roots to 1887, Americans are living longer, healthier lives. Life expectancy for a baby born in the U.S. has risen from 47 years in 1900 to more than 78 years today. Among the advances that have helped to make this possible are a 70% decline in the U.S. death rate from cardiovascular disease ...
Source: TIME: Science - Category: Science Authors: Tags: Uncategorized Healthcare medicine Source Type: news
In conclusion, a polypharmacology approach of combining established, prolongevity drug inhibitors of specific nodes may be the most effective way to target the nutrient-sensing network to improve late-life health. Deletion of p38α in Neurons Slows Neural Stem Cell Decline and Loss of Cognitive Function in Mice https://www.fightaging.org/archives/2019/10/deletion-of-p38%ce%b1-in-neurons-slows-neural-stem-cell-decline-and-loss-of-cognitive-function-in-mice/ Researchers here provide evidence for p38α to be involved in the regulation of diminished neural stem cell activity with age. It is thought...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In this study, researchers studied 438,952 participants in the UK Biobank, who had a total of 24,980 major coronary events - defined as the first occurrence of non-fatal heart attack, ischaemic stroke, or death due to coronary heart disease. They used an approach called Mendelian randomisation, which uses naturally occurring genetic differences to randomly divide the participants into groups, mimicking the effects of running a clinical trial. People with genes associated with lower blood pressure, lower LDL cholesterol, and a combination of both were put into different groups, and compared against those without thes...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In conclusion, our data show how oncogenic and tumor-suppressive drivers of cellular senescence act to regulate surveillance processes that can be circumvented to enable SnCs to elude immune recognition but can be reversed by cell surface-targeted interventions to purge the SnCs that persist in vitro and in patients. Since eliminating SnCs can prevent tumor progression, delay the onset of degenerative diseases, and restore fitness; since NKG2D-Ls are not widely expressed in healthy human tissues and NKG2D-L shedding is an evasion mechanism also employed by tumor cells; and since increasing numbers of B cells express NKG2D ...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In conclusion, with study of the frailty syndrome still in its infancy, frailty analysis remains a major challenge. It is a challenge that needs to be overcome in order to shed light on the multiple mechanisms involved in the pathogenesis of this syndrome. Although several mechanisms contribute to frailty, immune system alteration seems to play a central role: this syndrome is characterized by increased levels of pro-inflammatory markers and the resulting pro-inflammatory status can have negative effects on various organs. Future studies should aim to better clarify the immune system alteration in frailty, and seek to esta...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
More News: Biology | Brain | Brain Cancers | Cancer | Cancer & Oncology | Genetics | Molecular Biology | Neurology | Parkinson's Disease | Study