Log in to search using one of your social media accounts:

 

[Report] A disynaptic feedback network activated by experience promotes the integration of new granule cells
We examined the remodeling of dentate gyrus microcircuits in mice in an enriched environment (EE). Short exposure to EE during early development of new GCs accelerated their functional integration. This effect was mimicked by in vivo chemogenetic activation of a limited population of mature GCs. Slice recordings showed that mature GCs recruit parvalbumin γ-aminobutyric acid–releasing interneurons (PV-INs) that feed back onto developing GCs. Accordingly, chemogenetic stimulation of PV-INs or direct depolarization of developing GCs accelerated GC integration, whereas inactivation of PV-INs prevented the effects o...
Source: ScienceNOW - October 27, 2016 Category: Science Authors: Diego D. Alvarez Source Type: news