A View of Type 2 Diabetes as Accelerated Aging
The mortality characteristics resulting from type 2 diabetes look very much like an accelerated form of normal aging, as noted in today's open access paper reporting on a large epidemiological study. This mortality characteristic is so much like aging that at times in the past researchers have used animal models of type 2 diabetes as stand-ins for aging, in order to conduct studies more rapidly. Type 2 diabetes is a metabolic disease, a condition that usually arises from excess fat tissue, and is characterized by chronic inflammation, excessive blood sugar, high levels of circulating advanced glycation end-products, and ot...
Source: Fight Aging! - April 2, 2024 Category: Research Authors: Reason Tags: Medicine, Biotech, Research Source Type: blogs

Chronic Pain Accelerates Brain Aging, Perhaps via Inflammation
A range of conditions produce chronic pain in muscle and skeletal tissue. While conditions such as osteoathritis are comparatively well understood, the etiology of chronic muscular pain disorders such as myofascial pain syndrome is poorly understood and treatment options are consequently limited. Here, researchers analyze available epidemiological data on knee osteoarthritis, and show that it suggests an inflammatory link between chronic pain and an accelerated pace of degenerative brain aging. Individuals suffering from chronic musculoskeletal pain (CMP) may face a higher high risk of brain aging. CMP is a leadin...
Source: Fight Aging! - April 2, 2024 Category: Research Authors: Reason Tags: Daily News Source Type: blogs

Lewy Body Disease May Be More Common than Thought
Access to human brain tissue for medical research is more limited than most people realize is the case, and, for obvious reasons, far too little of the available tissue data covers the early stages of disease. This limitation is one of the factors slowing the pace of research into age-related neurodegenerative conditions. Here, for example, researchers make use of an unusual resource to show that the prevalence of Lewy body disease may be greater than presently thought, with pathology beginning in the 50s, even if there are no outright symptoms of disease at that stage. Lewy body disease is the second most common ...
Source: Fight Aging! - April 2, 2024 Category: Research Authors: Reason Tags: Daily News Source Type: blogs

A Stem Cell Secretome Treatment Improves Measures of Health in Old Mice
In this study, we tested a stem cell secretome product, which contains extracellular vesicles and growth factors, cytoskeletal remodeling factors, and immunomodulatory factors. We examined the effects of 4 weeks of 2×/week unilateral intramuscular secretome injections (quadriceps) in ambulatory aged male C57BL/6 mice (22-24 months) compared to saline-injected aged-matched controls. Secretome delivery substantially increased whole-body lean mass and decreased fat mass, corresponding to higher myofiber cross-sectional area and smaller adipocyte size, respectively. Secretome-treated mice also had greater whole-bod...
Source: Fight Aging! - April 1, 2024 Category: Research Authors: Reason Tags: Medicine, Biotech, Research Source Type: blogs

Efferocytosis in the Context of Aging and Age-Related Disease
There is something of a tradition in the aging research community of writing reviews that attempt to summarize everything that is known of a single specific cellular behavior in the context of the panoply of cell and tissue dysfunction observed in aging. Today it is the turn of efferocytosis, the clearance of dying cells and their immediate debris by phagocytes such as macrophages of the innate immune system. It is fairly straightforward to mount an argument to suggest that more efficient efferocytosis is a good thing, as unwanted consequences attend the presence of lingering cell corpses cluttering up tissue. Like autopha...
Source: Fight Aging! - April 1, 2024 Category: Research Authors: Reason Tags: Daily News Source Type: blogs

Reversal of Markers of Aging in Cells Following Small Molecule Partial Reprogramming
Partial reprogramming by exposure to Yamanaka factors resets many of the epigenetic changes characteristic of cells in aged tissue. This is a potential approach to the production of future rejuvenation therapies. At present, some research groups are attempting to move away from genetic interventions to find small molecules that can provoke reprogramming. There are some avenues that seem promising. Here, researchers assess the effects of partial reprogramming by small molecules on a range of omics data and functional parameters for cells, finding that the outcomes are much as one would expect for a successful protocol. ...
Source: Fight Aging! - April 1, 2024 Category: Research Authors: Reason Tags: Daily News Source Type: blogs

Fight Aging! Newsletter, April 1st 2024
This study supports the proposed model that aging-related loss of colonic crypt epithelial cell AMP gene expression can promote increased relative abundances of Gn inflammaging-associated bacteria and gene expression markers of colonic inflammaging. These data may support new targets for aging-related therapies based on intestinal genes and microbiomes. « Back to Top A Skeptical View of the Role of Nuclear DNA Damage in Aging https://www.fightaging.org/archives/2024/03/a-skeptical-view-of-the-role-of-nuclear-dna-damage-in-aging/ It is evident and settled that stochastic nuclear DNA damag...
Source: Fight Aging! - March 31, 2024 Category: Research Authors: Reason Tags: Newsletters Source Type: blogs

Problematic B Cells Accumulate in Visceral Fat and Indirectly Provoke Inflammation
The authors of today's open access paper present an interesting and novel way in which visceral fat tissue provokes chronic inflammation. It has been noted that dysfunctional B cells accumulate with age. Here, dysfunctional B cells of a specific subtype are shown to accumulate in aged visceral fat tissue, acting to provoke other immune cells in visceral fat tissue, such as macrophages, into a more pro-inflammatory state. The researchers demonstrate that removing the B cell population helps to reduce the age-related inflammation generated by visceral fat by removing the contribution to inflammatory macrophage behavior. ...
Source: Fight Aging! - March 29, 2024 Category: Research Authors: Reason Tags: Medicine, Biotech, Research Source Type: blogs

Tristetraprolin Upregulation Reduces Frailty and Increases Bone Density in Old Mice
Researchers here report that life-long tristetraprolin (TTP) upregulation leads to reduced frailty and improved bone mineral density in aged mice. One of the functions of TTP is that it suppresses expression of the pro-inflammatory TNF-α cytokine, so a reduced degree of age-related inflammation would be the first place to look for an explanation of the outcome noted here. It is an open question as to whether TTP upregulation produces a more nuanced and reactive reduction of TNF-α signaling than is the case for the blunt, across the board inhibition achieved by present anti-TNF-α therapies, and is thus a mechanism that i...
Source: Fight Aging! - March 29, 2024 Category: Research Authors: Reason Tags: Daily News Source Type: blogs

Regulatory T Cells Contribute to Reduced Myelination in the Aging Brain
Myelin surrounds the axons that connect neurons to one another, and is required for the transmission of electrical impulses. This myelin sheath is maintained by oligodendrocytes. These cells do not carry out their work in isolation; a great many factors are involved in determining the size and capabilities of the oligodendrocyte population. Aging is disruptive to the myelination carried out by oligodendrocytes. The consequences are not as bad as the profound loss of myelin that takes place in demyelinating diseases such as multiple sclerosis, but age-related loss of myelination does appear to degrade cognitive function. Re...
Source: Fight Aging! - March 29, 2024 Category: Research Authors: Reason Tags: Daily News Source Type: blogs

A Skeptical View of the Role of Nuclear DNA Damage in Aging
It is evident and settled that stochastic nuclear DNA damage contributes to cancer. The more of it that you have, the worse your risk. What is still very much debated is whether nuclear DNA damage contributes meaningfully to degenerative aging, and how it does so. Most mutational damage to DNA occurs in regions that are inactive, in cells that have comparatively few divisions remaining before reaching the Hayflick limit. Even if damage alters the function of such a cell, in some non-cancerous way, it is unclear as to how this could amount to a meaningful contribution to loss of tissue function. The one school of tho...
Source: Fight Aging! - March 28, 2024 Category: Research Authors: Reason Tags: Medicine, Biotech, Research Source Type: blogs

Further Considering the Altered Transcription of Longer Genes with Age
The machinery of gene expression changes with age. In recent years, it has been noted that the length of gene sequences correlates with the degree to which transcription of gene sequences into RNA molecules changes over the course of aging. Later work has started to examine the proximate causes of these changes, various fine detail mechanisms buried in the depths of transcription. The research community is not yet at the point of being able to conclusively demonstrate that altered transcription of longer genes produces meaningful downstream consequences in degenerative aging, as interventions specifically targeting just th...
Source: Fight Aging! - March 28, 2024 Category: Research Authors: Reason Tags: Daily News Source Type: blogs

Inhibiting P16 in Microglia Reduces Amyloid Plaques in Mice
Researchers here show that targeting microglia in a mouse model of Alzheimer's disease to suppress p16 expression can reduce amyloid-β plaques. This appears to be a way to interfere in a maladaptive reaction to amyloid-β on the part of microglia, innate immune cells responsible for clearing molecular debris from brain tissue. P16 is a marker of cellular senescence, though may also be characteristic of non-senescent but still problematic, pro-inflammatory microglia. There is a good amount of evidence to suggest that both senescent and overly active microglia are important to the progression of neurodegenerative conditions...
Source: Fight Aging! - March 28, 2024 Category: Research Authors: Reason Tags: Daily News Source Type: blogs

Loss of Anti-Microbial Peptides as a Mechanism for Age-Related Changes in Gut Microbiome Composition
This study supports the proposed model that aging-related loss of colonic crypt epithelial cell AMP gene expression promotes increased relative abundances of Gn inflammaging-associated bacteria and gene expression markers of colonic inflammaging. These data may support new targets for aging-related therapies based on intestinal genes and microbiomes. (Source: Fight Aging!)
Source: Fight Aging! - March 27, 2024 Category: Research Authors: Reason Tags: Medicine, Biotech, Research Source Type: blogs

Lipid Droplets in Microglia Involved in Alzheimer's Pathology
Microglia are innate immune cells resident in the central nervous system. Microglial dysfunction is clearly a contributing factor in the onset and progression of age-related neurodegenerative conditions, including Alzheimer's disease, as well as the accompanying chronic inflammation of brain tissue. As to why microglia become problematic and inflammatory, there are any number of possible contributing mechanisms to consider. Cellular senescence, mitochondrial dysfunction, reactions to cell debris or the presence of persistent viral infections, and more. In this vein, researchers here discuss excessive lipid accumulation in ...
Source: Fight Aging! - March 27, 2024 Category: Research Authors: Reason Tags: Daily News Source Type: blogs