In-situ preparation of hollow CdCoS < sub > 2 < /sub > heterojunction with enhanced photocurrent response for highly photoelectrochemical sensing of organophosphorus pesticides

In this study, a porous hollow CdCoS2(2) microsphere was synthesized based on the ZIF-67-S MOFs derived method of sulfurization reaction and calcination process. Under visible light irradiation, the resulting CdCoS2(2) composite showed a markedly enhanced photoelectrochemical (PEC) response. The photocurrent value of the CdCoS2(2) modified ITO electrode was 93-fold and 41-fold than that of CoS and CdS materials, respectively. Promoting the photo-absorption ability by internal multilight scattering/reflection was due to the porous and hollow nature of CdCoS2(2). Furthermore, obtained CdCoS2(2) heterostructure in-situ with a close contact interface could facilitate the separation/migration of photo-induced carriers. The CdCoS2(2) was also mixed with Ag nanoparticles (NPs) to further improve the PEC response. Acetylcholinesterase (AChE) as a bio-recognition molecule was immobilized on the glutaraldehyde-chitosan (GLD-CS) modified CdCoS2(2)@Ag electrode surface by cross-linking effect. AChE could hydrolyze the acetylcholine chloride (ATCl) to produce an electron donor of thiocholine which led to the elevated photocurrent output. When the bioactivity of AChE was inhibited by the organophosphate pesticides (chlorpyrifos as substrate), the reduced production of thiocholine resulted in a decline in photocurrent. Under optimal conditions, the structured AChE/GLD-CS/CdCoS2(2)@Ag/ITO sensing platform was successfully achieved for chlorpyrifos detection. The wide linear response range wa...
Source: Analytica Chimica Acta - Category: Chemistry Authors: Source Type: research