Pesticides Inhibit Retinoic Acid Catabolism in PLHC-1 and ZFL Fish Hepatic Cell Lines

Chem Res Toxicol. 2022 May 24. doi: 10.1021/acs.chemrestox.2c00050. Online ahead of print.ABSTRACTThe population of yellow perch (Perca flavescens) in lake Saint-Pierre (QC, Canada) has been dramatically declining since 1995 without any sign of recovery. Previous studies have shown disrupted retinoid (vitamin A) metabolic pathways in these fish, possibly due to the influence of pesticides. Our study aimed to evaluate the impact of some herbicides and neonicotinoids on retinoic acid catabolism in the fish hepatic cell lines PLHC-1 and ZFL. We hypothesized that pesticides accelerate the catabolism of retinoic acid through oxidative stress that exacerbates the oxidation of retinoic acid. Results obtained with talarozole, a specific CYP26A1 inhibitor, and ketoconazole, a generalist inhibitor of cytochrome-P450 enzymes, revealed that CYP26A1 is mainly responsible for retinoic acid catabolism in ZFL but not PLHC-1 cells. The impacts of pesticides on retinoic acid catabolism were evaluated by incubating the cells with all-trans-retinoic acid and two herbicides, atrazine and glyphosate, or three neonicotinoids, clothianidin, imidacloprid, and thiamethoxam. Intracellular thiols and lipid peroxidation were measured following pesticide exposure. The possible causal relation between oxidative stress and the perturbation of retinoic acid catabolism was investigated using the antioxidant N-acetylcysteine. The data revealed that pesticides inhibit retinoic acid catabolism, with the involvem...
Source: Cell Research - Category: Cytology Authors: Source Type: research