Studies of defect states and kinetic parameters of car windscreen for thermoluminescence retrospective dosimetry

Appl Radiat Isot. 2022 May 12;186:110271. doi: 10.1016/j.apradiso.2022.110271. Online ahead of print.ABSTRACTIn case of any natural disasters or technical failures of nuclear facilities, the surrounding media including human beings may receive unexpected radiation exposures. In such a situation, there is no viable way to know how much radiation dose is received by human beings. Realizing that motorized vehicles are parked at fixed but increasing distances within the nuclear installation and industrial environment, this study investigates the kinetic parameters of readily available car windscreens which form the basis to be employed in post-accident dose reconstruction or for retrospective dosimetry. To understand the luminescence features of this crystalline media, a convenient thermoluminescence (TL) technique has been employed. Several well-defined theoretical models and methods were employed to calculate the kinetic parameters including the order of kinetics (b), activation energy (E) or trap depth, frequency factor (s) or escape probability and trap lifetime (τ), by analyzing the glow curves of the irradiated samples. The analysed trapping parameters indicate that the Toyota (E = 0.75-1.31 eV, s = 3.0E+6 - 3.7E+9 (s-1), τ = 6.9E+5 - 1.3E+14 s) and Honda (E = 0.95-1.68 eV, s = 2.1E+10 - 4.1E+13 (s-1), τ = 2.2E+9 - 3.1E+20 s) windscreen offer promising features for conventional TL dosimetry applications, while the obtained longer lifetime (τ = 6.8E+10 - 8.6E+29 s) or hi...
Source: Applied Radiation and Isotopes - Category: Radiology Authors: Source Type: research