MTOR-mediated interaction between the oocyte and granulosa cells regulates the development and function of both compartments in mice

Biol Reprod. 2022 May 12:ioac099. doi: 10.1093/biolre/ioac099. Online ahead of print.ABSTRACTCoordinated development of the germline and the somatic compartments within a follicle is an essential prerequisite for creating a functionally normal oocyte. Bi-directional communication between the oocyte and the granulosa cells enables the frequent interchange of metabolites and signals that support the development and functions of both compartments. Mechanistic target of Rapamycin (MTOR), a conserved serine/threonine kinase and a widely recognized integrator of signals and pathways key for cellular metabolism, proliferation, and differentiation, is emerging as a major player that regulates many factes of oocyte and follicle development. Here, we summarized our recent observations on the role of oocyte- and granulosa cell-expressed MTOR in the control of the oocyte's and granulosa cell's own development, as well as the development of one another, and provided new data that further strengthen the role of cumulus cell-expressed MTOR in synchronizing oocyte and follicle development. Inhibition of MTOR induced oocyte meiotic resumption in cultured large antral follicles, as well as cumulus expansion and the expression of cumulus expansion-related transcripts in cumulus-oocyte complexes in vitro. In vivo, the activity of MTOR in cumulus cells was diminished remarkablely by 4 h after hCG administration. These results thus suggest that activation of MTOR in cumulus cells contributes to th...
Source: Biology of Reproduction - Category: Reproduction Medicine Authors: Source Type: research