Design, synthesis, and biological evaluation of trizole-based heteroaromatic derivatives as Bcr-Abl kinase inhibitors

Eur J Med Chem. 2022 May 6;238:114425. doi: 10.1016/j.ejmech.2022.114425. Online ahead of print.ABSTRACTBcr-Abl is a key driver in the pathophysiology of CML. Broadening the chemical diversity of Bcr-Abl kinase inhibitors to overcome drug resistance is a current medical demand for CML treatment. As a continuation to our research, a series of compounds with heteroaromatics-trizole scaffold as hinge binding moiety (HBM) were developed as Bcr-Abl inhibitors based on in silico modeling analysis. Biological results indicated that these compounds exhibited a significantly enhanced inhibition against Bcr-AblWT and Bcr-AblT315I in kinases assays, along with improved anti-proliferative activities in leukemia cell assays, compared with previous disclosed compounds. In particular, compounds 9f, 28c, 31, and 44c displayed comparable even better potency with that of Imatinib in enzymatic assay and cell assays including K562 cells and adriamycin-resistant K562/A cells. Moreover, compounds 9f, 28c, and 44c exhibited potent inhibition activities against K562R cells bearing T315I mutant with IC50 of 13.35 μM, 40.14 μM, and 1.91 μM, respectively, outperforming that of Imatinib. Meanwhile, the inhibition of Bcr-Abl activity in Ba/F3 cells demonstrated that these compounds exerted effects mainly by acting on Bcr-Abl. Additionally, compounds 9f, 28c, and 44c effectively induced apoptosis, arrest the cell cycle at S or G2/M phase, and inhibited phosphorylation of Bcr-Abl and STAT5 in a dose-dep...
Source: European Journal of Medicinal Chemistry - Category: Chemistry Authors: Source Type: research
More News: Chemistry | Gleevec | Leukemia | Study