SCClone: Accurate Clustering of Tumor Single-Cell DNA Sequencing Data

Single-cell DNA sequencing (scDNA-seq) enables high-resolution profiling of genetic diversity among single cells and is especially useful for deciphering the intra-tumor heterogeneity and evolutionary history of tumor. Specific technical issues such as allele dropout, false-positive errors, and doublets make scDNA-seq data incomplete and error-prone, giving rise to a severe challenge of accurately inferring clonal architecture of tumor. To effectively address these issues, we introduce a new computational method called SCClone for reasoning subclones from single nucleotide variation (SNV) data of single cells. Specifically, SCClone leverages a probability mixture model for binary data to cluster single cells into distinct subclones. To accurately decipher underlying clonal composition, a novel model selection scheme based on inter-cluster variance is employed to find the optimal number of subclones. Extensive evaluations on various simulated datasets suggest SCClone has strong robustness against different technical noises in scDNA-seq data and achieves better performance than the state-of-the-art methods in reasoning clonal composition. Further evaluations of SCClone on three real scDNA-seq datasets show that it can effectively find the underlying subclones from severely disturbed data. The SCClone software is freely available at https://github.com/qasimyu/scclone.
Source: Frontiers in Genetics - Category: Genetics & Stem Cells Source Type: research
More News: Genetics