Local radiotherapy and E7 RNA-LPX vaccination show enhanced therapeutic efficacy in preclinical models of HPV16+ cancer

AbstractHuman papilloma virus (HPV) infection is a causative agent for several cancers types (genital, anal and head and neck region). The HPV E6 and E7 proteins are oncogenic drivers and thus are ideal candidates for therapeutic vaccination. We recently reported that a novel ribonucleic acid lipoplex (RNA-LPX)-based HPV16 vaccine, E7 RNA-LPX, mediates regression of mouse HPV16+ tumors and establishes protectiveTcell memory. An HPV16 E6/E7 RNA-LPX vaccine is currently being investigated in two phase I and II clinical trials in various HPV-driven cancer types; however, it remains a high unmet medical need for treatments for patients with radiosensitive HPV16+ tumors. Therefore, we set out to investigate the therapeutic efficacy of E7 RNA-LPX vaccine combined with standard-of-care local radiotherapy (LRT). We demonstrate that E7 RNA-LPX synergizes with LRT in HPV16+ mouse tumors, with potent therapeutic effects exceeding those of either monotherapy. Mode of action studies revealed that the E7  RNA-LPX vaccine induced high numbers of intratumoral-E7-specific CD8+Tcells, rendering cold tumors immunologically hot, whereas LRT primarily acted as a cytotoxic therapy, reducing tumor mass and intratumor hypoxia by predisposing tumor cells to antigen-specificTcell-mediated killing. Overall, LRT enhanced the effector function of E7 RNA-LPX-primedTcell responses. The therapeutic synergy was dependent on total radiation dose, rather than radiation dose-fractionation. Together, these resu...
Source: Cancer Immunology, Immunotherapy - Category: Cancer & Oncology Source Type: research