Non-enzymatic glycation of annulus fibrosus alters tissue-level failure mechanics in tension

J Mech Behav Biomed Mater. 2021 Nov 20;126:104992. doi: 10.1016/j.jmbbm.2021.104992. Online ahead of print.ABSTRACTAdvanced-glycation end products (AGEs) are known to accumulate in biological tissues with age and at an accelerated rate in patients with diabetes and chronic kidney disease. Clinically, diabetes has been linked to increased frequency and severity of back pain, accelerated disc degeneration, and an increased risk of disc herniation. Despite significant clinical evidence suggesting that diabetes-induced AGEs may play a role in intervertebral disc failure and substantial previous work investigating the effects of AGEs on bone, cartilage, and tendon mechanics, the effects of AGEs on annulus fibrosus (AF) failure mechanics have not yet been reported. Thus, the aim of this study was to determine the relationship between physiological levels of AGEs and AF tensile mechanics at two distinct loading rates. In vitro glycation treatments with methylglyoxal were applied to minimize changes in tissue hydration and induce two distinct levels of AGEs based on values measured from human AF tissues. In vitro glycation increased modulus by 48-99% and failure stress by 45-104% versus control and decreased post-failure energy absorption capacity by 15-32% versus control (ANOVA p < 0.0001 on means; range given across two loading rates and glycation levels). AGE content correlated strongly with modulus (R = 0.74, p < 0.0001) and failure stress (R = 0.70, p < 0.0001) and mode...
Source: Journal of the Mechanical Behavior of Biomedical Materials - Category: Materials Science Authors: Source Type: research