Tyndall-Effect-inspired assay with gold nanoparticles for the colorimetric discrimination and quantification of mercury ions and glutathione

Talanta. 2022 Feb 1;238(Pt 1):122999. doi: 10.1016/j.talanta.2021.122999. Epub 2021 Oct 29.ABSTRACTThis work initially reports a new nanosening method for simple, sensitive, specific, visual detection of mercury (II) (Hg2+) and glutathione (GSH) using the Tyndall Effect (TE) of the same colloidal gold nanoparticle (GNP) probes for efficient colorimetric signaling amplification. For the TE-inspired assay (TEA) method, arginine (Arg) molecules are pre-modified on the GNPs' surfaces (Arg-GNPs). Upon the Hg2+ introduction, it can be specifically coordinated with the terminal -NH2 and -COOH groups of the Arg molecules to make the Arg-GNPs aggregate, producing a significantly-enhanced TE signal in the reaction solution after its irradiation by a 635-nm red laser pointer pen. On the other hand, the introduction of the GSH results in the production of the original Arg-GNPs' weak TE response, as it is able to bind such metal ion via mercury-thiol reactions to inhibit the above aggregation. Under the optimal conditions, the utility of the new TEA method is well demonstrated to quantitatively detect the Hg2+ and GSH with the aid of a smartphone as a portable TE reader during the linear concentration ranges of 50-3000 and 10-3000 nM, respectively. The detection limits for the Hg2+ and GSH are estimated to be as low as ∼3.5 and ∼0.3 nM, respectively. The recovery results obtained from the detection of Hg2+ in the complex tap and pond water samples and the assay of GSH in real human se...
Source: Talanta - Category: Chemistry Authors: Source Type: research