Simultaneous quantification of selected glycosaminoglycans by butanolysis-based derivatization and LC-SRM/MS analysis for assessing glycocalyx disruption in vitro and in vivo

Talanta. 2022 Feb 1;238(Pt 1):123008. doi: 10.1016/j.talanta.2021.123008. Epub 2021 Oct 28.ABSTRACTGlycosaminoglycans (GAGs) constitute the main building blocks of the endothelial glycocalyx (GLX), and disruption of GLX initiates and promotes endothelial dysfunction. Here, we aimed to develop a novel, specific and accurate LC-SRM/MS-based method for glycosaminoglycans (GAGs) profiling. The method involved butanolysis derivatization to facilitate GAG-specific disaccharide generation and its subsequent retention in LC-reversed-phase mode followed by mass spectrometric detection performed in positive ion-selected reaction monitoring (SRM) mode. GAG contents were measured in media of endothelial cells (EA.hy926) subjected to various GAG-degrading enzymes, as well as in murine plasma and urine in apolipoprotein E/low-density lipoprotein receptor-deficient (ApoE/LDLR -/-) mice and age-matched wild-type C57BL/6 mice. Alternatively, GLX disruption was verified by atomic force microscopy (AFM)-based analysis of GLX thickness. The proposed assay to quantify GAG-specific disaccharides presented high sensitivity for each of the analytes (LLOQ: 0.05-0.1 μg/mL) as well as accuracy and precision (86.8-114.9% and 2.0-14.3%, respectively). In medium of EA.hy926 cells subjected to GAG-degrading enzymes various GAG-specific disaccharides indicating the degradation of keratan sulphate (KS), heparan sulphate (HS), chondroitin sulphate (CHS) or hyaluronan (HA) were detected as predicted based on ...
Source: Talanta - Category: Chemistry Authors: Source Type: research
More News: Chemistry