Engineering Cancer Antigen-Specific T Cells to Overcome the Immunosuppressive Effects of TGF- β

J Immunol. 2021 Dec 1:ji2001357. doi: 10.4049/jimmunol.2001357. Online ahead of print.ABSTRACTAdoptive T cell therapy with T cells expressing affinity-enhanced TCRs has shown promising results in phase 1/2 clinical trials for solid and hematological tumors. However, depth and durability of responses to adoptive T cell therapy can suffer from an inhibitory tumor microenvironment. A common immune-suppressive agent is TGF-β, which is secreted by tumor cells and cells recruited to the tumor. We investigated whether human T cells could be engineered to be resistant to inhibition by TGF-β. Truncating the intracellular signaling domain from TGF-β receptor (TGFβR) II produces a dominant-negative receptor (dnTGFβRII) that dimerizes with endogenous TGFβRI to form a receptor that can bind TGF-β but cannot signal. We previously generated specific peptide enhanced affinity receptor TCRs recognizing the HLA-A*02-restricted peptides New York esophageal squamous cell carcinoma 1 (NY-ESO-1)157-165/l-Ag family member-1A (TCR: GSK3377794, formerly NY-ESO-1c259) and melanoma Ag gene A10254-262 (TCR: ADP-A2M10, formerly melanoma Ag gene A10c796). In this article, we show that exogenous TGF-β inhibited in vitro proliferation and effector functions of human T cells expressing these first-generation high-affinity TCRs, whereas inhibition was reduced or abolished in the case of second-generation TCRs coexpressed with dnTGFβRII (e.g., GSK3845097). TGF-β isoforms and a panel of TGF-β-associa...
Source: Journal of Immunology - Category: Allergy & Immunology Authors: Source Type: research