Disease-modifying therapeutic strategies in osteoarthritis: current status and future directions

Exp Mol Med. 2021 Nov 30. doi: 10.1038/s12276-021-00710-y. Online ahead of print.ABSTRACTOsteoarthritis (OA) is the most common form of arthritis. It is characterized by progressive destruction of articular cartilage and the development of chronic pain and constitutes a considerable socioeconomic burden. Currently, pharmacological treatments mostly aim to relieve the OA symptoms associated with inflammation and pain. However, with increasing understanding of OA pathology, several potential therapeutic targets have been identified, enabling the development of disease-modifying OA drugs (DMOADs). By targeting inflammatory cytokines, matrix-degrading enzymes, the Wnt pathway, and OA-associated pain, DMOADs successfully modulate the degenerative changes in osteoarthritic cartilage. Moreover, regenerative approaches aim to counterbalance the loss of cartilage matrix by stimulating chondrogenesis in endogenous stem cells and matrix anabolism in chondrocytes. Emerging strategies include the development of senolytic drugs or RNA therapeutics to eliminate the cellular or molecular sources of factors driving OA. This review describes the current developmental status of DMOADs and the corresponding results from preclinical and clinical trials and discusses the potential of emerging therapeutic approaches to treat OA.PMID:34848838 | DOI:10.1038/s12276-021-00710-y
Source: Molecular Medicine - Category: Molecular Biology Authors: Source Type: research

Related Links:

In conclusion, the MR exhibited the protective effects against age-related behavioral disorders, which could be partly explained by activating circulating FGF21 and promoting mitochondrial biogenesis, and consequently suppressing the neuroinflammation and oxidative damages. These results demonstrate that FGF21 can be used as a potential nutritional factor in dietary restriction-based strategies for improving cognition associated with neurodegeneration disorders. Senescent T Cells Cause Changes in Fat Tissue that are Harmful to Long-Term Health https://www.fightaging.org/archives/2021/04/senescent-t-cells-cause-...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
We examined specific aspects of metabolism in male PolG+/mut mice at 6 and 12 months of age under three dietary conditions: normal chow (NC) feeding, high-fat feeding (HFD), and 24-hr starvation. We performed mitochondrial proteomics and assessed dynamics and quality control signaling in muscle and liver to determine whether mitochondria respond to mtDNA point mutations by altering morphology and turnover. In the current study, we observed that the accumulation of mtDNA point mutations failed to disrupt metabolic homeostasis and insulin action in male mice, but with aging, metabolic health was likely preserved by counterme...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In conclusion, the study indicates that HBOT may induce significant senolytic effects that include significantly increasing telomere length and clearance of senescent cells in the aging populations. Data on the Prevalence of Liver Fibrosis in Middle Age https://www.fightaging.org/archives/2020/11/data-on-the-prevalence-of-liver-fibrosis-in-middle-age/ Fibrosis is a consequence of age-related disarray in tissue maintenance processes, leading to the deposition of scar-like collagen that disrupts tissue structure and function. It is an ultimately fatal issue for which there are only poor treatment options a...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
We report that electrical stimulation (ES) stimulation of post-stroke aged rats led to an improved functional recovery of spatial long-term memory (T-maze), but not on the rotating pole or the inclined plane, both tests requiring complex sensorimotor skills. Surprisingly, ES had a detrimental effect on the asymmetric sensorimotor deficit. Histologically, there was a robust increase in the number of doublecortin-positive cells in the dentate gyrus and SVZ of the infarcted hemisphere and the presence of a considerable number of neurons expressing tubulin beta III in the infarcted area. Among the genes that were unique...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In this study, we examined the effects of oxytocin on the Aβ-induced impairment of synaptic plasticity in mice. To investigate the effect of oxytocin on synaptic plasticity, we prepared acute hippocampal slices for extracellular recording and assessed long-term potentiation (LTP) with perfusion of the Aβ active fragment (Aβ25-35) in the absence and presence of oxytocin. We found that oxytocin reversed the impairment of LTP induced by Aβ25-35 perfusion in the mouse hippocampus. These effects were blocked by pretreatment with the selective oxytocin receptor antagonist L-368,899. Furthermore, the tr...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In conclusion, our results suggest a previously unknown mechanism whereby the canonical NF-κB cascade and a mitochondrial fission pathway interdependently regulate endothelial inflammation. Lin28 as a Target for Nerve Regeneration https://www.fightaging.org/archives/2020/05/lin28-as-a-target-for-nerve-regeneration/ Researchers here show that the gene Lin28 regulates axon regrowth. In mice, raised levels of Lin28 produce greater regeneration of nerve injuries. Past research has investigated Lin28 from the standpoint of producing a more general improvement in regenerative capacity. It improves mitoch...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
AbstractPurpose of ReviewThis is a comprehensive literature review of the available evidence and techniques of foot injections for chronic pain conditions. It briefly describes common foot chronic pain syndromes and then reviews available injection techniques for each of these syndromes, weighing the available evidence and comparing the available approaches.Recent FindingsFoot and ankle pain affects 20% of the population over 50 and significantly impairs mobility and ability to participate in activities of daily living (ADLs), as well as increases fall risk. It is commonly treated with costly surgery, at times with questio...
Source: Pain and Therapy - Category: Anesthesiology Source Type: research
In conclusion, this study suggests that epigenetic age acceleration is significantly associated with lung function in women older than 50 years. We hypothesised that this could be due to menopause. However, we have observed that menopause has minimal effect and therefore there is possibility of other unknown physiological factors at older age in females mediating the epigenetic age acceleration effect on lung function. While, it is still unknown what exactly epigenetic aging from DNA methylation measures, this study suggests it can be utilised as one of the important factors to assess women's lung health in old age. DNA me...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In conclusion, with study of the frailty syndrome still in its infancy, frailty analysis remains a major challenge. It is a challenge that needs to be overcome in order to shed light on the multiple mechanisms involved in the pathogenesis of this syndrome. Although several mechanisms contribute to frailty, immune system alteration seems to play a central role: this syndrome is characterized by increased levels of pro-inflammatory markers and the resulting pro-inflammatory status can have negative effects on various organs. Future studies should aim to better clarify the immune system alteration in frailty, and seek to esta...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
This study elucidates the potential to use mitochondria from different donors (PAMM) to treat UVR stress and possibly other types of damage or metabolic malfunctions in cells, resulting in not only in-vitro but also ex-vivo applications. Gene Therapy in Mice Alters the Balance of Macrophage Phenotypes to Slow Atherosclerosis Progression https://www.fightaging.org/archives/2019/07/gene-therapy-in-mice-alters-the-balance-of-macrophage-phenotypes-to-slow-atherosclerosis-progression/ Atherosclerosis causes a sizable fraction of all deaths in our species. It is the generation of fatty deposits in blood vessel...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
More News: Arthritis | Chronic Pain | Clinical Trials | Molecular Biology | Osteoarthritis | Pain | Pathology | Rheumatology | Stem Cell Therapy | Stem Cells