Classification of Left-Versus Right-Hand Motor Imagery in Stroke Patients Using Supplementary Data Generated by CycleGAN

This study proposes a surrogate EEG data-generation system based on cycle-consistent adversarial networks (CycleGAN) that can expand the number of training data. This study used EEG2Image based on a modified S-transform (MST) to convert EEG data into EEG-topography. This method retains the frequency-domain characteristics and spatial information of the EEG signals. Then, the CycleGAN is used to learn and generate motor-imagery EEG data of stroke patients. From the visual inspection, there is no difference between the EEG topographies of the generated and original EEG data collected from the stroke patients. Finally, we used convolutional neural networks (CNN) to evaluate and analyze the generated EEG data. The experimental results show that the generated data effectively improved the classification accuracy.
Source: IEE Transactions on Neural Systems and Rehabilitation Engineering - Category: Neuroscience Source Type: research