Vapor Adsorption Measurements with Two-Dimensional Membranes

Chemphyschem. 2021 Nov 24. doi: 10.1002/cphc.202100732. Online ahead of print.ABSTRACTTwo-dimensional (2D) membranes display extraordinary mass transfer properties, in particular for the permeation of gaseous substances. Their ultimate thickness not only ensures the shortest diffusion pathways, but also makes the membrane surface play a significant role in accommodating and guiding the permeating molecules. As saturated vapors of water and organic solvents are often observed to pass 2D membranes faster than inert gases, condensation is believed to be responsible for surface-mediated transport. Here, we present a spectroscopic experiment to probe adsorption of condensable species on 2D membranes under realistic conditions. Polarization-modulation infrared reflection absorption spectroscopy (PM IRAS) is coupled with a reaction chamber and a vacuum system to control the vaporous environments. The measurements are demonstrated to yield quantitative information on the amount of adsorbates onto supported 2D layers. As a case study, the azeotropic mixture of water and propanol is revealed to maintain its molar composition upon interaction with carbon nanomembranes.PMID:34817107 | DOI:10.1002/cphc.202100732
Source: Chemphyschem - Category: Chemistry Authors: Source Type: research