Inhibiting Spasticity by Blocking Nerve Signal Conduction in Rats With Spinal Cord Transection

Spasticity is a common motor disorder following a variety of upper motor neuron lesions that seriously affects the quality of patient’s life. We aimed to evaluate whether muscle spasms can be suppressed by blocking nerve signal conduction. A rat model of lower limb spasm was prepared and the conduction of pathological nerve signals were blocked to study the inhibitory effect of nerve signal block on muscle spasm. The experimental results showed that 4 weeks after the 9th segment of the rat’s thoracic spinal cord was completely transacted, the ${H}/{M}$ -ratio of the lower limbs increased, and rate-dependent depression was weakened. When the rat model was stimulated by external forces, the electromyography (EMG) signals of the spastic gastrocnemius muscles continued to erupt. After blocking the conduction of nerve signals in the rat sciatic nerve, the spastic EMG signal of the gastrocnemius muscle disappeared. The effective blocking time and blocking efficiency increased with increasing blocking signal amplitude, and the maximum blocking efficiency reached 73%. The experimental results of this study proved the feasibility of inhibiting lower limb spasticity by blocking nerve signal conduction.
Source: IEE Transactions on Neural Systems and Rehabilitation Engineering - Category: Neuroscience Source Type: research