Generalized neural field theory of cortical plasticity illustrated by an application to the linear phase of ocular dominance column formation in primary visual cortex

Biol Cybern. 2021 Nov 13. doi: 10.1007/s00422-021-00901-w. Online ahead of print.ABSTRACTPhysiologically based neural field theory (NFT) is extended to encompass cortical plasticity dynamics. An illustrative application is provided which treats the evolution of the connectivity of left- and right-eye visual stimuli to neuronal populations in the primary visual cortex (V1), and the initial, linear phase of formation of approximately one-dimensional (1D) ocular dominance columns (ODCs) that sets their transverse spatial scale. This links V1 activity, structure, and physiology within a single theory that already accounts for a range of other brain activity and connectivity phenomena, thereby enabling ODC formation and many other phenomena to be interrelated and cortical parameters to be constrained across multiple domains. The results accord with experimental ODC widths for realistic cortical parameters and are based directly on a unified description of the neuronal populations involved, their connection strengths, and the neuronal activity they support. Other key results include simple analytic approximations for ODC widths and the parameters of maximum growth rate, constraints on cortical excitatory and inhibitory gains, elucidation of the roles of specific poles of the V1 response function, and the fact that ODCs are not formed when input stimuli are fully correlated between eyes. This work provides a basis for further generalization of NFT to model other plasticity phenomena...
Source: Biological Cybernetics - Category: Science Authors: Source Type: research