Photopolymerizable chitosan hydrogels with improved strength and 3D printability

In this study, a novel chiotsan hydrogel is prepared from maleic chitosan (MCS) with high acrylate group substitution (i.e. 1.67) and thiol-terminated poly (ethylene glycol) (TPEG) via step-chain growth photopolymerization approach, which can overcome significantly the oxygen inhibition effect. Rheological property, microstructure, mechanical properties and in vitro degradation can be regulated by changing the thiol/acrylate molar ratio. There is strong intermolecular action between MCS and TPEG. Notably, photopolymerized MCS/TPEG hydrogel exhibited ~2-fold and ~ 10-fold increase in gelling rate and compressive strength, respectively, compared to pure chitosan hydrogel. Based on these results, 3D printing of chitosan hydrogel fabricated by simultaneous extrusion deposition and thiol-acrylate photopolymerization, demonstrates printing accuracy and improved scaffold stability. This 3D printing of chitosan hydrogel shows no cytotoxicity and can support adherence of L929 cells, suggesting its potential in biomedical applications such as tissue engineering and drug delivery.PMID:34699888 | DOI:10.1016/j.ijbiomac.2021.10.137
Source: International Journal of Biological Macromolecules - Category: Biochemistry Authors: Source Type: research
More News: Biochemistry | Men | Study