Load phycocyanin to achieve in vivo imaging of casein-porous starch microgels induced by ultra-high-pressure homogenization

In this study, a novel type of casein-porous starch microgel was prepared under ultra-high-pressure homogenization, by using porous starch with the honeycomb three-dimensional network porous structure. Molecular interaction force analysis and thermodynamic analysis showed that electrostatic interaction played a major role in the formation of microgels. Circular dichroism and Fourier transform infrared spectroscopy showed that homogenization and pH were the main factors, which affected the formation and structural stability of microgels. Compared with casein-glutinous rice starch microgels, the encapsulation efficiency and loading capacity of phycocyanin in casein-porous starch microgels were increased by 77.27% and 135.10%, respectively. Thus, casein-porous starch microgels could not only achieve a sustained release effect, but also effectively transport phycocyanin to the gastrointestinal tract of zebrafish, while achieving good fluorescence imaging in vivo. Ultimately, the prepared casein-porous starch microgels could enrich the nanocarriers material, and contribute to the research of safe and effective fluorescent imaging materials.PMID:34699889 | DOI:10.1016/j.ijbiomac.2021.10.127
Source: International Journal of Biological Macromolecules - Category: Biochemistry Authors: Source Type: research