Role of organic/sulfide ratios on competition of DNRA and denitrification in a co-driven sequencing biofilm batch reactor

In this study, a series of C/S ratios from 8:1 to 2:4 were investigated in a sequencing biofilm batch reactor (SBBR) to determine the role of reducers (sulfide and acetate) on their competition. The results showed that the proportion of DNRA increased in high electron system, either in organic-rich system or in sulfide-rich system. The highest DNRA ratio increased to 16.4% at the C/S ratio of 2:3. Excess electron donors, particularly sulfide, were favorable for DNRA in a limited nitrate environment. Moreover, a higher reductive environment could facilitate DNRA, especially, when ORP was lower than - 400 mV in this system. 16S rRNA gene sequencing analysis demonstrated that Geobacter might be the important participant involved in DNRA process in organic-rich system, while Desulfomicrobium might be the dominant DNRA bacteria in sulfide-rich system. DNRA cultivation could enrich nitrogen conversion pathways in conventional denitrification systems and deepen the insight into nitrogen removal at low C/N.PMID:34699005 | DOI:10.1007/s11356-021-17058-5
Source: Environmental Science and Pollution Research International - Category: Environmental Health Authors: Source Type: research