Molecular Insights of SARS-CoV-2 Infection and Molecular Treatments

In this study, we investigated the current research progress in combating SARS-CoV-2 infection. Based on the published research findings, we first elucidated, at the molecular level, SARS-CoV-2 viral structures, potential viral host-cell-invasion and pathogenic mechanisms, main virus-induced immune responses, and emerging SARS-CoV-2 variants. We then focused on the main virus- and host-based potential targets, summarized and categorized effective inhibitory molecules based on drug development strategies for COVID-19, that can guide efforts for the identification of new drugs and treatment for this problematic disease. Current research and development of antibodies and vaccines were also introduced and discussed. We concluded that the main virus entry route- SARS-CoV-2 spike protein interaction with ACE2 receptors has played a key role in guiding the development of therapeutic treatments against COVID-19, four main therapeutic strategies may be considered in developing molecular therapeutics, and drug repurposing is likely to be an easy, fast and low-cost approach in such a short period of time with urgent need of antiviral drugs. Additionally, the quick development of antibody and vaccine candidates has yielded promising results, but the wide-scale deployment of safe and effective COVID-19 vaccines remains paramount in solving the pandemic crisis. As new variants of the virus begun to emerge, the efficacy of these vaccines and treatments must be closely evaluated. Finally, we...
Source: Current Molecular Medicine - Category: Molecular Biology Authors: Source Type: research