Inhibition of microRNA-297 alleviates THLE-2 cell injury induced by hypoxia/reoxygenation by inhibiting NLRP3 inflammasome activation via SIRT3

Can J Physiol Pharmacol. 2021 Sep 24. doi: 10.1139/cjpp-2021-0287. Online ahead of print.ABSTRACTIt has been acknowledged that microRNAs (miRNAs/miRs) assume a critical role in hypoxia/reoxygenation (H/R)-induced hepatocyte injury. Therefore, cell experiments were performed in this study to investigate the mechanism of miR-297 in H/R-induced hepatocyte injury with the involvement of Sirtuin 3 (SIRT3) and NLRP3. Initially, THLE-2 cells were utilized for H/R challenge. After miR-297 antagomir and NLRP3 adenovirus vector delivery, THLE-2 cell proliferation and apoptosis were measured by MTT, EdU and TUNEL assays, respectively. Enzyme-linked immunosorbent assay was conducted to evaluate the levels of apoptosis-related indicators (Bax and Bcl-2) and inflammation-related indicators (IL-6 and IL-10), western blot analysis to detect NLRP3 and Cleaved Caspase-1 expression. The binding relation between miR-297 and SIRT3 was examined using dual-luciferase assay. The results showed that miR-297 antagomir repressed the apoptosis and inflammation induced by H/R treatment in THLE-2 cells. Mechanistically, miR-297 antagomir diminished the extent of IκBα and NF-κB phosphorylation and NLRP3 activation in H/R-induced THLE-2 cells by targeting SIRT3. Furthermore, NLRP3 overexpression normalized the promoting effects of miR-297 antagomir on proliferation and its inhibitory effects on apoptosis and inflammation in H/R-induced THLE-2 cells. In summary, our results elucidated that miR-297 antagom...
Source: Canadian Journal of Physiology and Pharmacology - Category: Drugs & Pharmacology Authors: Source Type: research