Antiviral effect of a bacteriophage on murine norovirus replication via modulation of the innate immune response

The objective of this study was to investigate the effects of the Staphylococcus aureus phage vB_SauM_JS25 on murine norovirus (MNV) replication. Experiments were performed using the RAW 264.7 cell line. After phage treatment, MNV multiplication was significantly inhibited, as indicated by real-time quantitative polymerase chain reaction (RT-qPCR) analysis, western blotting, the 50% tissue culture infectious dose and immunofluorescence. Furthermore, we revealed transcriptional changes in phage/MNV co-incubated RAW 264.7 cells through RNA sequencing (RNA-seq) and bioinformatic analysis. Our subsequent analyses revealed that the innate immune response might play an important role in restriction of MNV replication, such as the cellular response to IFN-γ and response to IFN-γ. Additionally, gene expression of IL-10, Arg-1, Ccl22, GBP2, GBP3, GBP5, and GBP7 was increased significantly, which indicated a strong correlation between RT-qPCR and RNA-seq results. Furthermore, phage treatment activated guanylate binding proteins (GBPs), as revealed by RT-qPCR analysis, western blotting, and confocal microscopy. Taken together, these data suggest that the phage affects the innate response, such as the IFN-inducible GTPases and GBPs, and therefore exerts an antiviral effect in vitro. Collectively, our findings provide insights into the interactions of immune cells and phages, which establish phage-based antiviral effects.PMID:34555440 | DOI:10.1016/j.virusres.2021.198572
Source: Virus Research - Category: Virology Authors: Source Type: research