The natural stilbenoid (-)-hopeaphenol inhibits cellular entry of SARS-CoV-2 USA-WA1/2020, B.1.1.7 and B.1.351 variants

Antimicrob Agents Chemother. 2021 Sep 20:AAC0077221. doi: 10.1128/AAC.00772-21. Online ahead of print.ABSTRACTAntivirals are urgently needed to combat the global SARS-CoV-2/COVID-19 pandemic, supplement existing vaccine efforts, and target emerging SARS-CoV-2 variants of concern. Small molecules that interfere with binding of the viral spike receptor binding domain (RBD) to the host ACE2 receptor may be effective inhibitors of SARS-CoV-2 cell entry. Here we screened 512 pure compounds derived from natural products using a high-throughput RBD/ACE2 binding assay and identified (-)-hopeaphenol, a resveratrol tetramer, in addition to vatalbinoside A and vaticanol B, as potent and selective inhibitors of RBD/ACE2 binding and viral entry. For example, (-)-hopeaphenol disrupted RBD/ACE2 binding with a 50% inhibitory concentration (IC50) of 0.11 μM in contrast to an IC50 of 28.3 μM against the unrelated host ligand/receptor binding pair PD-1/PD-L1 (selectivity index = 257.3). When assessed against the USA-WA1/2020 variant, (-)-hopeaphenol also inhibited entry of a VSVΔG-GFP reporter pseudovirus expressing SARS-CoV-2 spike into ACE2-expressing Vero-E6 cells and in vitro replication of infectious virus in cytopathic effect and yield reduction assays (50% effective concentrations (EC50s) = 10.2 - 23.4 μM) without cytotoxicity and approaching the activities of the control antiviral remdesivir (EC50s = 1.0 - 7.3 μM). Notably, (-)-hopeaphenol also inhibited two emerging variants of co...
Source: Antimicrobial Agents and Chemotherapy - Category: Microbiology Authors: Source Type: research