Insights on the disruption of the complex between human positive coactivator 4 and p53 by small molecules

Biochem Biophys Res Commun. 2021 Sep 10;578:15-20. doi: 10.1016/j.bbrc.2021.09.020. Online ahead of print.ABSTRACTInteraction between human positive coactivator 4 (PC4), an abundant nuclear protein, and the tumor suppressor protein p53 plays a crucial role in initiating apoptosis. In certain neurodegenerative diseases PC4 assisted-p53-dependent apoptosis may play a central role. Thus, disruption of p53-PC4 interaction may be a good drug target for certain disease pathologies. A p53-derived short peptide (AcPep) that binds the C-terminal domain of PC4 (C-PC4) is known to disrupt PC4-p53 interaction. To fully characterize its binding mode and binding site on PC4, we co-crystallized C-PC4 with the peptide and determined its structure. The crystal, despite exhibiting mass spectrometric signature of the peptide, lacked peptide electron density and showed a novel crystal lattice, when compared to C-PC4 crystals without the peptide. Using peptide-docked models of crystal lattices, corresponding to our structure and the peptide-devoid structure we show the origin of the novel crystal lattice to be dynamically bound peptide at the previously identified putative binding site. The weak binding is proposed to be due to the lack of the N-terminal domain of PC4 (N-PC4), which we experimentally show to be disordered with no effect on PC4 stability. Taking cue from the structure, virtual screening of ∼18.6 million small molecules from the ZINC15 database was performed, followed by toxicity...
Source: Biochemical and Biophysical Research communications - Category: Biochemistry Authors: Source Type: research