Candidates for smart cardiovascular medical device coatings: A comparative study with endothelial and smooth muscle cells

Eur J Pharmacol. 2021 Sep 4:174490. doi: 10.1016/j.ejphar.2021.174490. Online ahead of print.ABSTRACTStent-induced vascular injury is manifested by removal of the endothelium and phenotypic changes in the underlying medial smooth muscle cells layer. This results in pathological vascular remodelling primarily contributed to smooth muscle cell proliferation and leads to vessel re-narrowing; neointimal hyperplasia. Current drug-eluting stents release non-selective anti-proliferative drugs such as paclitaxel from the stent surface that not only inhibit growth of smooth muscle cells but also delay endothelial healing, potentially leading to stent thrombosis. This highlights the need for novel bioactive stent coating candidates with the ability to target key events in the pathogenesis of in-stent restenosis. Citric acid, a molecule with anti-coagulant properties, was investigated against L-ascorbic acid, an antioxidant molecule reported to preferentially promote endothelial growth, and paclitaxel, a typically used anti-proliferative stent coating. Citric acid was found to exhibit growth supporting properties on endothelial cells across a range of concentrations that were significantly better than the model stent coating drug paclitaxel and better than the ascorbic acid which inhibited endothelial proliferation at concentrations ≥100 μg/ml. It was demonstrated that a citric acid-paclitaxel combination treatment significantly improves cell viability in comparison to paclitaxel onl...
Source: European Journal of Pharmacology - Category: Drugs & Pharmacology Authors: Source Type: research