Linking TDP-43 Dysfunction, Cholesterol, and Maintenance of Myelin in Neurodegeneration

TDP-43 is one of the few proteins in the body that can misfold in ways that lead to solid aggregates that disrupt cell and tissue function. The biochemistry and relevance of TDP-43 is a more recent area of research in comparison to the study of, say, amyloid-β in Alzheimer's disease and α-synuclein in Parkinson's disease, but it appears important to the progression of a number of neurodegenerative conditions. Researchers here elaborate on the relationship between TDP-43 and age-related demyelination, the corrosion of myelin sheathing around axons that is necessary for nervous system function, normally maintained by a population of cells known as oligodendrocytes. Extreme demyelination leads to ultimately fatal conditions such as multiple sclerosis, but occurs to a lesser yet still harmful degree in normal aging, contributing to cognitive decline. The TDP-43 protein is linked to multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 plays many vital roles within cells, but, under certain circumstances, it can clump together to form toxic aggregates that damage cells and prevent TDP-43 from performing its normal functions. TDP-43 aggregates are found in the brains of most ALS patients and ~45% of FTD patients and are also linked to several other neurodegenerative disorders, including some cases of Alzheimer's disease. The aggregates form not only in neurons, but also in other brain cell types such ...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs