Evaluation of covariate effects using variance-based global sensitivity analysis in pharmacometrics

AbstractIn pharmacometrics, understanding a covariate effect on an interested outcome is essential for assessing the importance of the covariate. Variance-based global sensitivity analysis (GSA) can simultaneously quantify contribution of each covariate effect to the variability for the interested outcome considering with random effects. The aim of this study was to apply GSA to pharmacometric models to assess covariate effects. Simulations were conducted with pharmacokinetic models to characterize the GSA for assessment of covariate effects and with an example of quantitative systems pharmacology (QSP) models to apply the GSA to a complex model. In the simulations, covariate and random variables were generated to simulate the outcomes using the models. Ratios of variance explained by each factor (each covariate and random effect) over the overall variance of the outcome were used as sensitivity indices. The sensitivity indices were consistent with the effect size of covariate. The sensitivity indices identified the importance of creatinine clearance on the pharmacokinetic exposure for a renally-excreted drug. These sensitivity indices could be applied to plasma concentrations over time (repeated measurable outcomes over time) as interested outcomes. Using the GSA, each contribution of all of the covariate effects could be efficiently identified even in the complex QSP model. Variance-based GSA can provide insight when considering the importance of covariate effects by simult...
Source: Journal of Pharmacokinetics and Pharmacodynamics - Category: Drugs & Pharmacology Source Type: research