A workflow for bacterial metabolic fingerprinting and lipid profiling: application to Ciprofloxacin challenged Escherichia coli

Abstract The field of lipidomics focuses upon the non-targeted analysis of lipid composition, the process of which follows similar routines to those applied in conventional metabolic profiling, however lipidomics differs with respect to the sample preparation steps and chosen analytical platform applied to the sample analysis. Conventionally, lipidomics has applied analytical techniques such as direct infusion mass spectrometry and more recently reverse phase liquid chromatography–mass spectrometry, for the detection of mono-, di-, and tri-acyl glycerols, phospholipids, and other complex lipophilic species such as sterols. The field is rapidly expanding, especially with respect to the clinical sciences where it is known that changes of lipid composition, especially phospholipids, are commonly associated with many disease processes. As a proof of principle study, a small number of Escherichia coli isolates were selected on the basis of their sensitivity to a second generation fluoroquinolone antibiotic, known as Ciprofloxacin (E. coli isolates 161 and 171, non-ST131 isolates, which are resistant and sensitive respectively: E. coli isolates 160 and 173, ST131 sequence isolates which are resistant and susceptible respectively). It has been proposed that Ciprofloxacin may be a surface active drug that interacts at the surface-water interface of the phospholipid bi-layer where the head groups reside. Further, antibiotic resistance through intracellular exclus...
Source: Metabolomics - Category: Biology Source Type: research