Nanoscale Model System for the Human Myelin Sheath

Biomacromolecules. 2021 Jul 29. doi: 10.1021/acs.biomac.1c00714. Online ahead of print.ABSTRACTNeurodegenerative disorders are among the most common diseases in modern society. However, the molecular bases of diseases such as multiple sclerosis or Charcot-Marie-Tooth disease remain far from being fully understood. Research in this field is limited by the complex nature of native myelin and by difficulties in obtaining good in vitro model systems of myelin. Here, we introduce an easy-to-use model system of the myelin sheath that can be used to study myelin proteins in a native-like yet well-controlled environment. To this end, we present myelin-mimicking nanodiscs prepared through one of the amphiphilic copolymers styrene/maleic acid (SMA), diisobutylene/maleic acid (DIBMA), and styrene/maleimide sulfobetaine (SMA-SB). These nanodiscs were tested for their lipid composition using chromatographic (HPLC) and mass spectrometric (MS) methods and, utilizing spin probes within the nanodisc, their comparability with liposomes was studied. In addition, their binding behavior with bovine myelin basic protein (MBP) was scrutinized to ensure that the nanodiscs represent a suitable model system of myelin. Our results suggest that both SMA and SMA-SB are able to solubilize the myelin-like (cytoplasmic) liposomes without preferences for specific lipid headgroups or fatty acyl chains. In nanodiscs of both SMA and SMA-SB (called SMA(-SB)-lipid particles, short SMALPs or SMA-SBLPs, respectivel...
Source: Biomacromolecules - Category: Biochemistry Authors: Source Type: research