Core oligosaccharide portion of lipopolysaccharide plays important roles on multiple antibiotic resistance in < em > Escherichia coli < /em >

In this study, a series of mutants that lack one or more major components associated with the cell envelope were constructed from Escherichia coli K-12 W3110. WJW02 can only synthesize Kdo2-lipid A which lacks the core oligosaccharide portion of lipopolysaccharide. WJW04, WJW07 and WJW08 were constructed from WJW02 by deleting the gene clusters relevant to the biosynthesis of exopolysaccharide, flagella and fimbria, respectively. WJW09, WJW010 and WJW011 cells cannot synthesize exopolysaccharide, flagella and fimbria, respectively. Comparing to the wild type W3110, mutants WJW02, WJW04, WJW07 and WJW08 cells showed decreased resistance to more than 10 different antibacterial drugs, but not the mutants WJW09, WJW010 and WJW011. This indicates that the core oligosaccharide portion of lipopolysaccharide plays important roles on multiple antibiotic resistance in E. coli and the 1st heptose in core oligosaccharide portion is critical. Furthermore, the removal of the core oligosaccharide of LPS leads to influences on cell wall morphology, cell phenotypes, porins, efflux systems, and the respond behaviors to antibiotic stimulation. The results demonstrated the important role of lipopolysaccharide on the antibiotic resistance of Gram-negative bacteria.PMID:34310209 | DOI:10.1128/AAC.00341-21
Source: Antimicrobial Agents and Chemotherapy - Category: Microbiology Authors: Source Type: research