Inflammation in an Animal Model of Multiple Sclerosis Leads to MicroRNA-25-3p Dysregulation Associated with Inhibition of Pten and Klf4

In this study, we investigated the expression of miR-25-3p and its targets in the central nervous system (CNS) tissue from mice with experimental autoimmune encephalomyelitis (EAE). We also analyzed the expression of miR-25 and its targets in activated macrophages and splenocytes. EAE was induced in 12-week old female C57BL/6 mice; using myelin oligodendrocyte glycoprotein 35-55/complete Freund's adjuvant (MOG35-55/CFA) protocol. The expression of miR-25-3p and its targets, as well as the expression of inflammatory cytokines, were analyzed. We next established primary macrophage cultures as well as splenocyte cultures and evaluated the levels of miR-25-3p and its target genes in these cells following activation with lipopolysaccharide (LPS) and anti-CD3/anti-CD28 antibodies, respectively. MiR-25-3p expression showed a strong positive correlation with the expression of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1α, and IL-6 pro-inflammatory cytokines. The expression of phosphatase and tensin homolog (Pten) and Krüppel-like factor 4 (Klf4) was significantly reduced at the peak of the disease. Interestingly, Pten and Klf4 expression showed a significant negative correlation with miR-25-3p. Analysis of miR-25-3p expression in LPS-treated primary macrophages revealed significant upregulation in cells treated with 100ng/ml of LPS. This was associated with suppressed levels of miR-25-3p targets in these cells. However, anti-CD3/anti-CD28-stimulated splenocytes failed t...
Source: Iranian Journal of Allergy, Asthma and Immunology - Category: Allergy & Immunology Authors: Source Type: research