Dextran-polylactide micelles loaded with doxorubicin and DiR for image-guided chemo-photothermal tumor therapy

In this study, an optimally synthesized dextran-polylactide (DEX-PLA) copolymer was assembled with doxorubicin (DOX) and DiR, a kind of NIR dye, to construct desirable micelles ((DiR + DOX)/DEX-PLA) for performing image-guided chemo-photothermal therapy. These (DiR + DOX)/DEX-PLA micelles had good physical and photothermal stability in aqueous media and showed high photothermal efficiency in vivo. Based on the H22-tumor-bearing mouse model, (DiR + DOX)/DEX-PLA micelles were found to accumulate inside tumors sustainably and to emit strong fluorescence signals for more than three days. The (DiR + DOX)@DEX-PLA micelles together with NIR laser irradiation were able to highly inhibit tumor growth or even eradicate tumors with one injection and two dose-designated 5-minute laser irradiations at the tumor site during 14 days of treatment. Furthermore, they showed almost no impairment to the body of the treated mice. These (DiR + DOX)@DEX-PLA micelles have confirmative translational potential in clinical tumor therapy on account of their persistent image-guided capacity, high antitumor efficacy and good in vivo safety.PMID:34310998 | DOI:10.1016/j.ijbiomac.2021.07.141
Source: International Journal of Biological Macromolecules - Category: Biochemistry Authors: Source Type: research
More News: Biochemistry | Study