Image analysis techniques to map pyramids, pyramid structure, glomerular distribution, and pathology in the intact human kidney from 3D MRI

Am J Physiol Renal Physiol. 2021 Jul 20. doi: 10.1152/ajprenal.00130.2021. Online ahead of print.ABSTRACTKidney pathologies are often highly heterogenous. To comprehensively understand kidney structure and pathology, it is critical to develop tool to map tissue microstructure in the context of the whole, intact organ. Magnetic resonance imaging (MRI) can provide a unique, three-dimensional (3D) view of the kidney and allows for measurement of multiple pathologic features. Here, we develop a platform to systematically render and map gross and microstructural features of the human kidney based on 3D MRI. These features include pyramid number and morphology, and associated medulla and cortex. in a subset of these kidneys, we also map individual glomeruli and glomerular volumes using cationic ferritin enhance-MRI to report intra-renal heterogeneity in glomerular density and size. Finally, we render and measure regions of nephron loss due to pathology and individual glomerular volumes in each pyramidal unit. This work provides new tools to comprehensively evaluate the kidney across scales, with potential applications in anatomical and physiological research, transplant allograft evaluation, biomarker development, biopsy guidance, and therapeutic monitoring. These image rendering and analysis tools could eventually impact the field of transplantation medicine to improve longevity matching of donor allografts and recipients and reduce discard rates through the direct assessment of d...
Source: Am J Physiol Renal P... - Category: Urology & Nephrology Authors: Source Type: research