GSE116214 An integrated analysis of small RNAs, degradome and transcriptome in rice seedling exposure to cadmium stress [transcriptome]

In this study, 40 miRNAs including 38 known miRNAs representing 22 miRNA families and 2 novel miRNAs were substantially altered in response to Cd exposure. 18 differentially altered target genes were inversely correlated with 18 Cd responsive miRNAs. Majority of these targeted genes are transcript factors such as Auxin response factor 13 (ARF13), Scarecrow-like protein 6 (SCL6), Squamosa promoter-binding-like proteins (SPLs), Nuclear transcription factor Y subunit A-6 (NFYA6), Gibberellin-dependent avian myeloblastosis virus oncogene (GAMYB) and No apical meristem protein domain containing proteins (NACs), most of which were involved in signal transduction such as abscisic acid (ABA), Auxin, Gibberellin acid (GA) and MAPK (Mitogen-activated protein kinase). Functional analysis revealed that genes involved in photosynthesis pathway (osa00196, osa00195 and osa00710) and protein degradation pathway (osa04612) were identified to be participated in response to Cd in rice, including osa-miR156I-5p_R-1/SPLs, osa-miR171a_1ss12CT/DEGP10 and osa-miR169r-5p_R/NFYA6 circuits, respectively. We conclude that a combination of transcriptome, sRNAs and the degradome would confer a useful approach to investigate miRNA-mediated molecular mechanisms underlying plant response to Cd stress.
Source: GEO: Gene Expression Omnibus - Category: Genetics & Stem Cells Tags: Expression profiling by high throughput sequencing Oryza sativa Source Type: research