Extensive cone-dependent spectral opponency within a discrete zone of the lateral geniculate nucleus supporting mouse color vision

Curr Biol. 2021 Jun 2:S0960-9822(21)00713-2. doi: 10.1016/j.cub.2021.05.024. Online ahead of print.ABSTRACTColor vision, originating with opponent processing of spectrally distinct photoreceptor signals, plays important roles in animal behavior.1-4 Surprisingly, however, comparatively little is understood about color processing in the brain, including in widely used laboratory mammals such as mice. The retinal gradient in S- and M-cone opsin (co-)expression has traditionally been considered an impediment to mouse color vision.5-8 However, recent data indicate that mice exhibit robust chromatic discrimination within the central-upper visual field.9 Retinal color opponency has been reported to emerge from superimposing inhibitory surround receptive fields on the cone opsin expression gradient, and by introducing opponent rod signals in retinal regions with sparse M-cone opsin expression.10-13 The relative importance of these proposed mechanisms in determining the properties of neurons at higher visual processing stages remains unknown. We address these questions using multielectrode recordings from the lateral geniculate nucleus (LGN) in mice with altered M-cone spectral sensitivity (Opn1mwR) and multispectral stimuli that allow selective modulation of signaling by individual opsin classes. Remarkably, we find many (∼25%) LGN cells are color opponent, that such cells are localized to a distinct medial LGN zone and that their properties cannot simply be explained by the propos...
Source: Current Biology - Category: Biology Authors: Source Type: research