A 3-styrylchromone converted from trimebutine 3D pharmacophore possesses dual suppressive effects on RAGE and TLR4 signaling pathways

Biochem Biophys Res Commun. 2021 Jun 7;566:1-8. doi: 10.1016/j.bbrc.2021.05.096. Online ahead of print.ABSTRACTReceptor for advanced glycation end-products (RAGE) and Toll-like receptors (TLRs) are potential therapeutic targets in the treatment of acute and chronic inflammatory diseases. We previously reported that trimebutine, a spasmolytic drug, suppresses RAGE pro-inflammatory signaling pathway in macrophages. The aim of this study was to convert trimebutine to a new small molecule using in silico 3D pharmacophore similarity search, and dissect the mechanistic anti-inflammatory basis. Of note, a unique 3-styrylchromone (3SC), 7-methoxy-3-trimethoxy-SC (7M3TMSC), converted from trimebutine 3D pharmacophore potently suppressed both high mobility group box 1-RAGE and lipopolysaccharide-TLR4 signaling pathways in macrophage-like RAW264.7 cells. More importantly, 7M3TMSC inhibited the phosphorylation of extracellular signaling-regulated kinase 1 and 2 (ERK1/2) and downregulated the production of cytokines, such as interleukin-6. Furthermore, 3D pharmacophore-activity relationship analyses revealed that the hydrogen bond acceptors of the trimethoxy groups in a 3-styryl moiety and the 7-methoxy-group in a chromone moiety in this compound are significant in the dual anti-inflammatory activity. Thus, 7M3TMSC may provide an important scaffold for the development of a new type of anti-inflammatory dual effective drugs targeting RAGE/TLR4-ERK1/2 signaling.PMID:34111666 | DOI:10.1016/j...
Source: Biochemical and Biophysical Research communications - Category: Biochemistry Authors: Source Type: research
More News: Biochemistry | Study