Distinctive Macrophage Signaling is Vital to Axolotl Limb and Organ Regeneration

Research into the comparative biology of regeneration suggests that mammals are in principle capable of proficient, full regeneration of complex tissues, but some critical difference in cell signaling and behavior leads instead to the formation of scar tissue in adults. In recent years, scientists have focused on the role of macrophages in coordinating the process of regeneration. In proficient regenerators like salamanders and zebrafish, the presence of macrophages is essential to the regenerative process. Absent macrophages, scar tissue forms in the same way as it does in mammals. Researchers now aim to understand exactly what is different in the behavior of macrophages in mammals and highly regenerative species. The axolotl, a Mexican salamander that is now all but extinct in the wild, is a favorite model in regenerative medicine research because of its one-of-a-kind status as nature's champion of regeneration. While most salamanders have some regenerative capacity, the axolotl can regenerate almost any body part. Since mammalian embryos and juveniles have the ability to regenerate - for instance, human infants can regenerate heart tissue and children can regenerate fingertips - it's likely that adult mammals retain the genetic code for regeneration, raising the prospect that pharmaceutical therapies could be developed to encourage humans to regenerate tissues and organs lost to disease or injury instead of forming a scar. Researchers compared immune cells ...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs