Structure of a dimer of the Sulfolobus solfataricus MCM N-terminal domain reveals a potential role in MCM ring opening

Cells strongly regulate DNA replication to ensure genomic stability and prevent several diseases, including cancers. Eukaryotes and archaea strictly control DNA-replication initiation by the regulated loading of hexameric minichromosome maintenance (MCM) rings to encircle both strands of the DNA double helix followed by regulated activation of the loaded rings such that they then encircle one DNA strand while excluding the other. Both steps involve an open/closed ring transformation, allowing DNA strands to enter or exit. Here, the crystal structure of a dimer of the N-terminal domain of Sulfolobus solfataricus MCM with an intersubunit interface that is more extensive than in closed-ring structures, while including common interactions to enable facile interconversion, is presented. It is shown that the identified interface could stabilize open MCM rings by compensating for lost interactions at an open neighbor interface and that the prior open-ring cryo-EM structure of MCM loading has a similar extended interface adjacent to its open interface.
Source: Acta Crystallographica Section F - Category: Biochemistry Authors: Tags: DNA replication helicases MCM minichromosome maintenance Sulfolobus solfataricus research communications Source Type: research