Interrogating biomineralization one amino acid at a time: amplification of mutational effects in protein-aided titania morphogenesis through reaction-diffusion control

Chem Commun (Camb). 2021 May 13;57(39):4803-4806. doi: 10.1039/d1cc01521d.ABSTRACTTo emulate the control that biomineralizing organisms exert over reactant transport, we construct a countercurrent reaction-diffusion chamber in which an agarose hydrogel regulates the fluxes of inorganic precursor and precipitating solid-binding protein. We show that the morphology of the bioprecipitated titania can be changed from monolithic to interconnected particle networks and dispersed nanoparticles either by decreasing reaction time or by increasing agarose weight percentage at constant precursor and protein concentrations. More strikingly, protein variants with one or two substitutions in their metal oxide-binding domain yield unique peripheral morphologies (needles, threads, plates, and peapods) with distinct crystallography and photocatalytic activity. Our results suggest that diffusional control can magnify otherwise subtle mutational effects in biomineralizing proteins and provide a path for the green synthesis of morphologically and functionally diverse inorganic materials.PMID:33982711 | DOI:10.1039/d1cc01521d
Source: Chemical Communications - Category: Chemistry Authors: Source Type: research