Novel Curcumin-Resveratrol Solid Nanoparticles Synergistically Inhibit Proliferation of Melanoma Cells

This study was designed to investigate the feasibility of a topical delivery system, using a solid lipid nanoparticles (SLNs) loaded delivery systems, that can enhance the skin penetration and anti-cancer efficacy of combination of these polyphenols. Negatively charged Cur-Res SLNs with a mean diameter of 180.2  ± 7.7 nm were prepared using high shear homogenization method. Cur-Res SLNs were found to be stable up to 2 weeks under 4°C. The in vitro release study showed that Res was released five time more than curcumin. The permeability of resveratrol was about 1.67 times that of curcumin from the S LN-gel formulation which was significantly (p <  0.05) lower than from SLN suspension. More than 70% of Cur-Res SLNs were bound to skin locally in a skin binding study suggesting potentially utility of Cur-Res SLNs in the treatment of localized melanoma. In fact, the electrical cell-substrate impedance sensing (ECIS) measurements suggested that Cur-Res combination has potential to stop cell migration of B16F10 melanoma cells. Furthermore, both, Cur-Res SLNs and Cur-Res solution at the ratio of 3:1 demonstrated a strong synergistic inhibition of SK-MEL-28 melanoma cell proliferation. Further evaluation of Cur-Res SLNs in vivo melanoma mode ls are warranted to establish the clinical utility of Cur-Res formulations in melanoma therapy.Graphical abstract
Source: Pharmaceutical Research - Category: Drugs & Pharmacology Source Type: research